Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,16 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import random
|
7 |
-
import spaces
|
8 |
import time
|
9 |
import re
|
10 |
from PIL import Image
|
11 |
from threading import Thread
|
12 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
13 |
-
from transformers.image_utils import load_image
|
14 |
|
15 |
#####################################
|
16 |
# 1. Load Model & Processor
|
17 |
#####################################
|
18 |
-
MODEL_ID = "google/gemma-3-12b-it" #
|
19 |
|
20 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
21 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
@@ -26,159 +22,110 @@ model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
26 |
model.eval()
|
27 |
|
28 |
#####################################
|
29 |
-
# 2. Helper Function:
|
30 |
#####################################
|
31 |
-
def
|
32 |
"""
|
33 |
-
|
34 |
-
|
35 |
"""
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
#####################################
|
57 |
-
# 3.
|
58 |
#####################################
|
59 |
-
|
60 |
-
def video_inference(video_file, duration):
|
61 |
"""
|
62 |
-
|
63 |
-
- Downsamples the video, passes frames to the model for inference.
|
64 |
-
- Returns model-generated text + a bar chart based on the text.
|
65 |
"""
|
66 |
-
|
67 |
-
return "No video provided.", None
|
68 |
-
|
69 |
-
# 3.1: Downsample the recorded video
|
70 |
-
frames = downsample_video(video_file)
|
71 |
if not frames:
|
72 |
-
return "Could not
|
73 |
-
|
74 |
-
#
|
75 |
-
messages = [
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
}
|
80 |
-
]
|
81 |
-
|
82 |
-
# Add frames (with timestamp) to the messages
|
83 |
for (image, ts) in frames:
|
84 |
messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
|
85 |
messages[0]["content"].append({"type": "image", "image": image})
|
86 |
-
|
87 |
-
# Prepare final prompt
|
88 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
89 |
-
|
90 |
-
# Gather images for the model
|
91 |
frame_images = [img for (img, _) in frames]
|
92 |
-
|
93 |
inputs = processor(
|
94 |
text=[prompt],
|
95 |
images=frame_images,
|
96 |
return_tensors="pt",
|
97 |
padding=True
|
98 |
).to("cuda")
|
99 |
-
|
100 |
-
#
|
101 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
102 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
|
103 |
-
|
104 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
105 |
thread.start()
|
106 |
-
|
107 |
generated_text = ""
|
108 |
for new_text in streamer:
|
109 |
generated_text += new_text
|
110 |
time.sleep(0.01)
|
111 |
-
|
112 |
-
|
113 |
-
# (Naive approach: frequency of top 5 words)
|
114 |
-
words = re.findall(r'\w+', generated_text.lower())
|
115 |
-
freq = {}
|
116 |
-
for w in words:
|
117 |
-
freq[w] = freq.get(w, 0) + 1
|
118 |
-
|
119 |
-
# Sort words by frequency (descending)
|
120 |
-
sorted_items = sorted(freq.items(), key=lambda x: x[1], reverse=True)
|
121 |
-
# Pick top 5 words (if fewer than 5, pick all)
|
122 |
-
top5 = sorted_items[:5]
|
123 |
-
|
124 |
-
if not top5:
|
125 |
-
# If there's no text or no valid words, return no chart
|
126 |
-
return generated_text, None
|
127 |
-
|
128 |
-
categories = [item[0] for item in top5]
|
129 |
-
values = [item[1] for item in top5]
|
130 |
-
|
131 |
-
# Create the figure
|
132 |
-
fig, ax = plt.subplots()
|
133 |
-
colors = ["#4B0082", "#9370DB", "#8A2BE2", "#DA70D6", "#BA55D3"] # Purple-ish palette
|
134 |
-
# Make sure we have enough colors for the number of bars
|
135 |
-
color_list = colors[: len(categories)]
|
136 |
-
|
137 |
-
ax.bar(categories, values, color=color_list)
|
138 |
-
ax.set_title("Top Keywords in Generated Description")
|
139 |
-
ax.set_ylabel("Frequency")
|
140 |
-
ax.set_xlabel("Keyword")
|
141 |
-
|
142 |
-
# Return the final text and the figure
|
143 |
-
return generated_text, fig
|
144 |
|
145 |
#####################################
|
146 |
-
# 4. Build
|
147 |
#####################################
|
148 |
-
def
|
149 |
with gr.Blocks() as demo:
|
150 |
-
gr.Markdown(""
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
# For older Gradio versions, avoid `source="webcam"`.
|
165 |
-
video = gr.Video(
|
166 |
-
label="Webcam Recording (press the Record button, then Stop)",
|
167 |
-
format="mp4"
|
168 |
-
)
|
169 |
-
analyze_btn = gr.Button("Analyze", variant="primary")
|
170 |
-
with gr.Column():
|
171 |
-
output_text = gr.Textbox(label="Model Output")
|
172 |
-
output_plot = gr.Plot(label="Analytics Chart")
|
173 |
-
|
174 |
-
analyze_btn.click(
|
175 |
-
fn=video_inference,
|
176 |
-
inputs=[video, duration],
|
177 |
-
outputs=[output_text, output_plot]
|
178 |
-
)
|
179 |
-
|
180 |
return demo
|
181 |
|
182 |
if __name__ == "__main__":
|
183 |
-
app =
|
184 |
app.launch(debug=True)
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import cv2
|
|
|
|
|
|
|
5 |
import time
|
6 |
import re
|
7 |
from PIL import Image
|
8 |
from threading import Thread
|
9 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
|
|
10 |
|
11 |
#####################################
|
12 |
# 1. Load Model & Processor
|
13 |
#####################################
|
14 |
+
MODEL_ID = "google/gemma-3-12b-it" # Adjust to your needs
|
15 |
|
16 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
17 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
|
22 |
model.eval()
|
23 |
|
24 |
#####################################
|
25 |
+
# 2. Helper Function: Capture Live Frames
|
26 |
#####################################
|
27 |
+
def capture_live_frames(duration=5, num_frames=10):
|
28 |
"""
|
29 |
+
Captures live frames from the default webcam for a specified duration.
|
30 |
+
Returns a list of (PIL image, timestamp) tuples.
|
31 |
"""
|
32 |
+
cap = cv2.VideoCapture(0) # Use default webcam
|
33 |
+
if not cap.isOpened():
|
34 |
+
return []
|
35 |
+
|
36 |
+
# Try to get FPS, default to 30 if not available.
|
37 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
38 |
+
if fps <= 0:
|
39 |
+
fps = 30
|
40 |
+
total_frames_to_capture = int(duration * fps)
|
41 |
+
frame_indices = np.linspace(0, total_frames_to_capture - 1, num_frames, dtype=int)
|
42 |
+
|
43 |
+
captured_frames = []
|
44 |
+
frame_count = 0
|
45 |
+
start_time = time.time()
|
46 |
+
|
47 |
+
while frame_count < total_frames_to_capture:
|
48 |
+
ret, frame = cap.read()
|
49 |
+
if not ret:
|
50 |
+
break
|
51 |
+
if frame_count in frame_indices:
|
52 |
+
# Convert BGR (OpenCV) to RGB (PIL)
|
53 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
54 |
+
pil_image = Image.fromarray(frame_rgb)
|
55 |
+
timestamp = round(frame_count / fps, 2)
|
56 |
+
captured_frames.append((pil_image, timestamp))
|
57 |
+
frame_count += 1
|
58 |
+
# Break if the elapsed time exceeds the duration.
|
59 |
+
if time.time() - start_time > duration:
|
60 |
+
break
|
61 |
+
cap.release()
|
62 |
+
return captured_frames
|
63 |
|
64 |
#####################################
|
65 |
+
# 3. Live Inference Function
|
66 |
#####################################
|
67 |
+
def live_inference(duration=5):
|
|
|
68 |
"""
|
69 |
+
Captures live frames from the webcam, builds a prompt, and returns the generated text.
|
|
|
|
|
70 |
"""
|
71 |
+
frames = capture_live_frames(duration=duration, num_frames=10)
|
|
|
|
|
|
|
|
|
72 |
if not frames:
|
73 |
+
return "Could not capture live frames from the webcam."
|
74 |
+
|
75 |
+
# Build prompt using the captured frames.
|
76 |
+
messages = [{
|
77 |
+
"role": "user",
|
78 |
+
"content": [{"type": "text", "text": "Please describe what's happening in this live video."}]
|
79 |
+
}]
|
|
|
|
|
|
|
|
|
80 |
for (image, ts) in frames:
|
81 |
messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
|
82 |
messages[0]["content"].append({"type": "image", "image": image})
|
83 |
+
|
|
|
84 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
|
|
|
85 |
frame_images = [img for (img, _) in frames]
|
86 |
+
|
87 |
inputs = processor(
|
88 |
text=[prompt],
|
89 |
images=frame_images,
|
90 |
return_tensors="pt",
|
91 |
padding=True
|
92 |
).to("cuda")
|
93 |
+
|
94 |
+
# Generate text using streaming.
|
95 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
96 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
|
97 |
+
|
98 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
99 |
thread.start()
|
100 |
+
|
101 |
generated_text = ""
|
102 |
for new_text in streamer:
|
103 |
generated_text += new_text
|
104 |
time.sleep(0.01)
|
105 |
+
|
106 |
+
return generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
#####################################
|
109 |
+
# 4. Build Gradio Live App
|
110 |
#####################################
|
111 |
+
def build_live_app():
|
112 |
with gr.Blocks() as demo:
|
113 |
+
gr.Markdown("# **Live Video Analysis**\n\nPress **Start** to capture a few seconds of live video from your webcam and analyze the content.")
|
114 |
+
with gr.Column():
|
115 |
+
duration_input = gr.Number(label="Capture Duration (seconds)", value=5, precision=0)
|
116 |
+
start_btn = gr.Button("Start")
|
117 |
+
output_text = gr.Textbox(label="Model Output")
|
118 |
+
restart_btn = gr.Button("Start Again", visible=False)
|
119 |
+
|
120 |
+
# This function triggers the live inference and also makes the restart button visible.
|
121 |
+
def start_inference(duration):
|
122 |
+
text = live_inference(duration)
|
123 |
+
return text, gr.update(visible=True)
|
124 |
+
|
125 |
+
start_btn.click(fn=start_inference, inputs=duration_input, outputs=[output_text, restart_btn])
|
126 |
+
restart_btn.click(fn=start_inference, inputs=duration_input, outputs=[output_text, restart_btn])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
return demo
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
+
app = build_live_app()
|
131 |
app.launch(debug=True)
|