Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -2,18 +2,14 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import cv2
|
5 |
-
import spaces
|
6 |
-
import time
|
7 |
-
import re
|
8 |
from PIL import Image
|
9 |
from threading import Thread
|
10 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
#####################################
|
15 |
-
MODEL_ID = "google/gemma-3-12b-it" # Adjust model ID as needed
|
16 |
-
|
17 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
18 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
19 |
MODEL_ID,
|
@@ -22,125 +18,155 @@ model = Gemma3ForConditionalGeneration.from_pretrained(
|
|
22 |
).to("cuda")
|
23 |
model.eval()
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
#####################################
|
28 |
-
def get_working_camera():
|
29 |
-
"""
|
30 |
-
Tries camera indices 0, 1, and 2 until a working camera is found.
|
31 |
-
Returns the VideoCapture object or None if no camera can be opened.
|
32 |
"""
|
33 |
-
|
34 |
-
cap = cv2.VideoCapture(i)
|
35 |
-
if cap.isOpened():
|
36 |
-
return cap
|
37 |
-
return None
|
38 |
-
|
39 |
-
#####################################
|
40 |
-
# 3. Helper Function: Capture Live Frames
|
41 |
-
#####################################
|
42 |
-
def capture_live_frames(duration=5, num_frames=10):
|
43 |
-
"""
|
44 |
-
Captures live frames from a working webcam for a specified duration.
|
45 |
Returns a list of (PIL Image, timestamp) tuples.
|
46 |
"""
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
frame_indices = np.linspace(0,
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
captured_frames.append((pil_image, timestamp))
|
72 |
-
frame_count += 1
|
73 |
-
if time.time() - start_time > duration:
|
74 |
-
break
|
75 |
-
cap.release()
|
76 |
-
return captured_frames
|
77 |
-
|
78 |
-
#####################################
|
79 |
-
# 4. Live Inference Function
|
80 |
-
#####################################
|
81 |
@spaces.GPU
|
82 |
-
def
|
83 |
"""
|
84 |
-
|
|
|
85 |
"""
|
86 |
-
|
|
|
|
|
|
|
87 |
if not frames:
|
88 |
-
return "Could not
|
89 |
-
|
90 |
-
#
|
91 |
-
messages = [
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
95 |
for (image, ts) in frames:
|
96 |
messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
|
97 |
messages[0]["content"].append({"type": "image", "image": image})
|
98 |
-
|
99 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
100 |
frame_images = [img for (img, _) in frames]
|
101 |
-
|
102 |
inputs = processor(
|
103 |
text=[prompt],
|
104 |
images=frame_images,
|
105 |
return_tensors="pt",
|
106 |
padding=True
|
107 |
).to("cuda")
|
108 |
-
|
109 |
-
# Generate text
|
110 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
111 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
|
112 |
-
|
113 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
114 |
thread.start()
|
115 |
-
|
116 |
generated_text = ""
|
117 |
for new_text in streamer:
|
118 |
generated_text += new_text
|
119 |
time.sleep(0.01)
|
120 |
-
|
121 |
return generated_text
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
with gr.Blocks() as demo:
|
128 |
-
gr.Markdown("
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
return demo
|
143 |
|
144 |
if __name__ == "__main__":
|
145 |
-
app =
|
146 |
-
app.launch(debug=True
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
import cv2
|
|
|
|
|
|
|
5 |
from PIL import Image
|
6 |
from threading import Thread
|
7 |
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
|
8 |
+
import spaces
|
9 |
+
import time
|
10 |
|
11 |
+
# Load Model & Processor
|
12 |
+
MODEL_ID = "google/gemma-3-12b-it"
|
|
|
|
|
|
|
13 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
14 |
model = Gemma3ForConditionalGeneration.from_pretrained(
|
15 |
MODEL_ID,
|
|
|
18 |
).to("cuda")
|
19 |
model.eval()
|
20 |
|
21 |
+
# Helper Function: Downsample Video
|
22 |
+
def downsample_video(video_path, max_duration=10, num_frames=10):
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
+
Downsamples the video to `num_frames` evenly spaced frames within the first `max_duration` seconds.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
Returns a list of (PIL Image, timestamp) tuples.
|
26 |
"""
|
27 |
+
vidcap = cv2.VideoCapture(video_path)
|
28 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
29 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
30 |
+
if fps <= 0 or total_frames <= 0:
|
31 |
+
vidcap.release()
|
32 |
+
return []
|
33 |
+
|
34 |
+
# Limit to first `max_duration` seconds
|
35 |
+
max_frames = min(int(fps * max_duration), total_frames)
|
36 |
+
frame_indices = np.linspace(0, max_frames - 1, num_frames, dtype=int)
|
37 |
+
|
38 |
+
frames = []
|
39 |
+
for i in frame_indices:
|
40 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
41 |
+
success, image = vidcap.read()
|
42 |
+
if success:
|
43 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
44 |
+
pil_image = Image.fromarray(image)
|
45 |
+
timestamp = round(i / fps, 2)
|
46 |
+
frames.append((pil_image, timestamp))
|
47 |
+
vidcap.release()
|
48 |
+
return frames
|
49 |
+
|
50 |
+
# Inference Function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
@spaces.GPU
|
52 |
+
def video_inference(video_file):
|
53 |
"""
|
54 |
+
Processes the video file and generates a text description based on the first 10 seconds.
|
55 |
+
Returns the generated text.
|
56 |
"""
|
57 |
+
if video_file is None:
|
58 |
+
return "No video provided."
|
59 |
+
|
60 |
+
frames = downsample_video(video_file, max_duration=10, num_frames=10)
|
61 |
if not frames:
|
62 |
+
return "Could not read frames from video."
|
63 |
+
|
64 |
+
# Construct prompt
|
65 |
+
messages = [
|
66 |
+
{
|
67 |
+
"role": "user",
|
68 |
+
"content": [{"type": "text", "text": "Please describe what's happening in this video."}]
|
69 |
+
}
|
70 |
+
]
|
71 |
for (image, ts) in frames:
|
72 |
messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
|
73 |
messages[0]["content"].append({"type": "image", "image": image})
|
74 |
+
|
75 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
76 |
frame_images = [img for (img, _) in frames]
|
77 |
+
|
78 |
inputs = processor(
|
79 |
text=[prompt],
|
80 |
images=frame_images,
|
81 |
return_tensors="pt",
|
82 |
padding=True
|
83 |
).to("cuda")
|
84 |
+
|
85 |
+
# Generate text with streaming
|
86 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
87 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
|
88 |
+
|
89 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
90 |
thread.start()
|
91 |
+
|
92 |
generated_text = ""
|
93 |
for new_text in streamer:
|
94 |
generated_text += new_text
|
95 |
time.sleep(0.01)
|
96 |
+
|
97 |
return generated_text
|
98 |
|
99 |
+
# Button Toggle Function
|
100 |
+
def toggle_button(has_result):
|
101 |
+
"""
|
102 |
+
Returns button label and visibility states based on whether a result has been generated.
|
103 |
+
"""
|
104 |
+
if has_result:
|
105 |
+
return "Start Again", gr.Button(visible=True), gr.Button(visible=False)
|
106 |
+
return "Start", gr.Button(visible=False), gr.Button(visible=True)
|
107 |
+
|
108 |
+
# Build the Gradio App
|
109 |
+
def build_app():
|
110 |
with gr.Blocks() as demo:
|
111 |
+
gr.Markdown("""
|
112 |
+
# **Gemma-3 Live Video Analysis**
|
113 |
+
Press **Start** to record a short video clip (up to 10 seconds). Stop recording to see the analysis.
|
114 |
+
After the result, press **Start Again** to analyze another clip.
|
115 |
+
""")
|
116 |
+
|
117 |
+
# State to track if a result has been generated
|
118 |
+
has_result = gr.State(value=False)
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
video = gr.Video(
|
123 |
+
source="webcam",
|
124 |
+
label="Webcam Recording",
|
125 |
+
format="mp4"
|
126 |
+
)
|
127 |
+
# Two buttons: one for Start, one for Start Again
|
128 |
+
start_again_btn = gr.Button("Start Again", visible=False)
|
129 |
+
start_btn = gr.Button("Start", visible=True)
|
130 |
+
with gr.Column():
|
131 |
+
output_text = gr.Textbox(label="Model Output")
|
132 |
+
|
133 |
+
# When video is recorded and stopped, process it
|
134 |
+
def process_video(video_file, has_result_state):
|
135 |
+
if video_file is None:
|
136 |
+
return "Please record a video.", has_result_state
|
137 |
+
result = video_inference(video_file)
|
138 |
+
return result, True
|
139 |
+
|
140 |
+
video.change(
|
141 |
+
fn=process_video,
|
142 |
+
inputs=[video, has_result],
|
143 |
+
outputs=[output_text, has_result]
|
144 |
+
)
|
145 |
+
|
146 |
+
# Update button visibility based on has_result
|
147 |
+
has_result.change(
|
148 |
+
fn=toggle_button,
|
149 |
+
inputs=has_result,
|
150 |
+
outputs=[start_again_btn, start_again_btn, start_btn]
|
151 |
+
)
|
152 |
+
|
153 |
+
# Clicking either button resets the video and output
|
154 |
+
def reset_state():
|
155 |
+
return None, "", False
|
156 |
+
|
157 |
+
start_btn.click(
|
158 |
+
fn=reset_state,
|
159 |
+
inputs=None,
|
160 |
+
outputs=[video, output_text, has_result]
|
161 |
+
)
|
162 |
+
start_again_btn.click(
|
163 |
+
fn=reset_state,
|
164 |
+
inputs=None,
|
165 |
+
outputs=[video, output_text, has_result]
|
166 |
+
)
|
167 |
+
|
168 |
return demo
|
169 |
|
170 |
if __name__ == "__main__":
|
171 |
+
app = build_app()
|
172 |
+
app.launch(debug=True)
|