Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,10 +6,20 @@ import time
|
|
6 |
import torch
|
7 |
import spaces
|
8 |
import subprocess
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
# Install flash-attn
|
11 |
-
subprocess.run(
|
|
|
|
|
|
|
|
|
12 |
|
|
|
13 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
|
14 |
model = AutoModelForImageTextToText.from_pretrained(
|
15 |
"HuggingFaceTB/SmolVLM2-2.2B-Instruct",
|
@@ -17,66 +27,112 @@ model = AutoModelForImageTextToText.from_pretrained(
|
|
17 |
torch_dtype=torch.bfloat16
|
18 |
).to("cuda:0")
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
@spaces.GPU
|
21 |
-
def model_inference(input_dict, history, max_tokens):
|
22 |
-
text = input_dict
|
23 |
-
media_queue = []
|
24 |
user_content = []
|
25 |
-
|
26 |
-
|
|
|
27 |
for file in input_dict.get("files", []):
|
28 |
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
|
29 |
media_queue.append({"type": "image", "path": file})
|
30 |
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
else:
|
44 |
-
|
45 |
-
user_content
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Process history
|
50 |
-
if history:
|
51 |
for hist in history:
|
52 |
-
if hist["role"] == "user":
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
elif hist["role"] == "assistant":
|
61 |
-
resulting_messages.append({
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
inputs = processor.apply_chat_template(
|
68 |
resulting_messages,
|
69 |
add_generation_prompt=True,
|
70 |
tokenize=True,
|
71 |
return_dict=True,
|
72 |
-
return_tensors="pt"
|
73 |
-
)
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
thread.start()
|
79 |
-
|
80 |
yield "..."
|
81 |
buffer = ""
|
82 |
for new_text in streamer:
|
@@ -84,16 +140,30 @@ def model_inference(input_dict, history, max_tokens):
|
|
84 |
time.sleep(0.01)
|
85 |
yield buffer
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
demo = gr.ChatInterface(
|
88 |
fn=model_inference,
|
89 |
-
title="SmolVLM2: The Smollest Video Model Ever 📺",
|
90 |
-
description=
|
91 |
-
|
92 |
-
|
|
|
|
|
|
|
|
|
|
|
93 |
multimodal=True,
|
94 |
cache_examples=False,
|
95 |
additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")],
|
96 |
type="messages"
|
97 |
)
|
98 |
|
99 |
-
demo.launch(debug=True
|
|
|
6 |
import torch
|
7 |
import spaces
|
8 |
import subprocess
|
9 |
+
import uuid
|
10 |
+
import cv2
|
11 |
+
import numpy as np
|
12 |
+
from PIL import Image
|
13 |
+
from io import BytesIO
|
14 |
|
15 |
+
# Install flash-attn
|
16 |
+
subprocess.run(
|
17 |
+
'pip install flash-attn --no-build-isolation',
|
18 |
+
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
19 |
+
shell=True
|
20 |
+
)
|
21 |
|
22 |
+
# Load processor and model.
|
23 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
|
24 |
model = AutoModelForImageTextToText.from_pretrained(
|
25 |
"HuggingFaceTB/SmolVLM2-2.2B-Instruct",
|
|
|
27 |
torch_dtype=torch.bfloat16
|
28 |
).to("cuda:0")
|
29 |
|
30 |
+
def downsample_video(video_path):
|
31 |
+
"""
|
32 |
+
Extracts 10 evenly spaced frames from the video at video_path.
|
33 |
+
Each frame is converted from BGR to RGB and returned as a PIL Image.
|
34 |
+
"""
|
35 |
+
vidcap = cv2.VideoCapture(video_path)
|
36 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
37 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
38 |
+
frames = []
|
39 |
+
if total_frames <= 0 or fps <= 0:
|
40 |
+
vidcap.release()
|
41 |
+
return frames
|
42 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
43 |
+
for i in frame_indices:
|
44 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
45 |
+
success, frame = vidcap.read()
|
46 |
+
if success:
|
47 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
48 |
+
pil_image = Image.fromarray(frame)
|
49 |
+
frames.append((pil_image, round(i / fps, 2)))
|
50 |
+
vidcap.release()
|
51 |
+
return frames
|
52 |
+
|
53 |
@spaces.GPU
|
54 |
+
def model_inference(input_dict, history, max_tokens):
|
55 |
+
text = input_dict["text"]
|
|
|
56 |
user_content = []
|
57 |
+
media_queue = []
|
58 |
+
|
59 |
+
# Process input files.
|
60 |
for file in input_dict.get("files", []):
|
61 |
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
|
62 |
media_queue.append({"type": "image", "path": file})
|
63 |
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
|
64 |
+
# Extract frames from video using OpenCV.
|
65 |
+
frames = downsample_video(file)
|
66 |
+
for frame, timestamp in frames:
|
67 |
+
temp_file = f"video_frame_{uuid.uuid4().hex}.png"
|
68 |
+
frame.save(temp_file)
|
69 |
+
media_queue.append({"type": "image", "path": temp_file})
|
70 |
+
|
71 |
+
# Build the conversation messages.
|
72 |
+
if not history:
|
73 |
+
text = text.strip()
|
74 |
+
# Use only the "<image>" token for inserting images.
|
75 |
+
if "<image>" in text:
|
76 |
+
parts = re.split(r'(<image>)', text)
|
77 |
+
for part in parts:
|
78 |
+
if part == "<image>" and media_queue:
|
79 |
+
user_content.append(media_queue.pop(0))
|
80 |
+
elif part.strip():
|
81 |
+
user_content.append({"type": "text", "text": part.strip()})
|
82 |
+
else:
|
83 |
+
user_content.append({"type": "text", "text": text})
|
84 |
+
for media in media_queue:
|
85 |
+
user_content.append(media)
|
86 |
+
resulting_messages = [{"role": "user", "content": user_content}]
|
87 |
else:
|
88 |
+
resulting_messages = []
|
89 |
+
user_content = []
|
90 |
+
media_queue = []
|
91 |
+
# Process history: now only image files are expected.
|
|
|
|
|
|
|
92 |
for hist in history:
|
93 |
+
if hist["role"] == "user" and isinstance(hist["content"], tuple):
|
94 |
+
file_name = hist["content"][0]
|
95 |
+
if file_name.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
|
96 |
+
media_queue.append({"type": "image", "path": file_name})
|
97 |
+
for hist in history:
|
98 |
+
if hist["role"] == "user" and isinstance(hist["content"], str):
|
99 |
+
text = hist["content"]
|
100 |
+
parts = re.split(r'(<image>)', text)
|
101 |
+
for part in parts:
|
102 |
+
if part == "<image>" and media_queue:
|
103 |
+
user_content.append(media_queue.pop(0))
|
104 |
+
elif part.strip():
|
105 |
+
user_content.append({"type": "text", "text": part.strip()})
|
106 |
elif hist["role"] == "assistant":
|
107 |
+
resulting_messages.append({
|
108 |
+
"role": "user",
|
109 |
+
"content": user_content
|
110 |
+
})
|
111 |
+
resulting_messages.append({
|
112 |
+
"role": "assistant",
|
113 |
+
"content": [{"type": "text", "text": hist["content"]}]
|
114 |
+
})
|
115 |
+
user_content = []
|
116 |
+
|
117 |
+
if text == "":
|
118 |
+
gr.Error("Please input a query and optionally image(s).")
|
119 |
+
|
120 |
+
print("resulting_messages", resulting_messages)
|
121 |
inputs = processor.apply_chat_template(
|
122 |
resulting_messages,
|
123 |
add_generation_prompt=True,
|
124 |
tokenize=True,
|
125 |
return_dict=True,
|
126 |
+
return_tensors="pt",
|
127 |
+
)
|
128 |
+
inputs = inputs.to(model.device)
|
129 |
+
|
130 |
+
# Generate response with streaming.
|
131 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
132 |
+
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
|
133 |
+
thread = Thread(target=model.generate, kwargs=generation_args)
|
134 |
thread.start()
|
135 |
+
|
136 |
yield "..."
|
137 |
buffer = ""
|
138 |
for new_text in streamer:
|
|
|
140 |
time.sleep(0.01)
|
141 |
yield buffer
|
142 |
|
143 |
+
examples = [
|
144 |
+
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
145 |
+
[{"text": "What art era does this artpiece <image> belong to?", "files": ["example_images/rococo.jpg"]}],
|
146 |
+
[{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}],
|
147 |
+
[{"text": "When was this purchase made and how much did it cost?", "files": ["example_images/fiche.jpg"]}],
|
148 |
+
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}],
|
149 |
+
[{"text": "What is happening in the video?", "files": ["example_images/short.mp4"]}],
|
150 |
+
]
|
151 |
+
|
152 |
demo = gr.ChatInterface(
|
153 |
fn=model_inference,
|
154 |
+
title="SmolVLM2: The Smollest Video Model Ever 📺",
|
155 |
+
description=(
|
156 |
+
"Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. "
|
157 |
+
"To get started, upload an image and text or try one of the examples. "
|
158 |
+
"This demo doesn't use history for the chat, so every chat you start is a new conversation."
|
159 |
+
),
|
160 |
+
examples=examples,
|
161 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
|
162 |
+
stop_btn="Stop Generation",
|
163 |
multimodal=True,
|
164 |
cache_examples=False,
|
165 |
additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")],
|
166 |
type="messages"
|
167 |
)
|
168 |
|
169 |
+
demo.launch(debug=True)
|