Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,179 +1,129 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import numpy as np
|
4 |
-
import cv2
|
5 |
-
from PIL import Image
|
6 |
from threading import Thread
|
7 |
-
|
8 |
-
AutoModelForCausalLM,
|
9 |
-
AutoTokenizer,
|
10 |
-
TextIteratorStreamer,
|
11 |
-
Qwen2VLForConditionalGeneration,
|
12 |
-
AutoProcessor,
|
13 |
-
)
|
14 |
-
import spaces
|
15 |
import time
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
|
19 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
20 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
21 |
-
MODEL_ID,
|
22 |
-
trust_remote_code=True,
|
23 |
-
torch_dtype=torch.bfloat16
|
24 |
-
).to("cuda")
|
25 |
-
model.eval()
|
26 |
-
|
27 |
-
# Helper Function: Downsample Video
|
28 |
-
def downsample_video(video_path, max_duration=10, num_frames=10):
|
29 |
-
"""
|
30 |
-
Downsamples the video to `num_frames` evenly spaced frames within the first `max_duration` seconds.
|
31 |
-
Returns a list of (PIL Image, timestamp) tuples.
|
32 |
-
"""
|
33 |
-
vidcap = cv2.VideoCapture(video_path)
|
34 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
35 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
36 |
-
if fps <= 0 or total_frames <= 0:
|
37 |
-
vidcap.release()
|
38 |
-
return []
|
39 |
-
|
40 |
-
# Limit to first `max_duration` seconds
|
41 |
-
max_frames = min(int(fps * max_duration), total_frames)
|
42 |
-
frame_indices = np.linspace(0, max_frames - 1, num_frames, dtype=int)
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
if success:
|
49 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
50 |
-
pil_image = Image.fromarray(image)
|
51 |
-
timestamp = round(i / fps, 2)
|
52 |
-
frames.append((pil_image, timestamp))
|
53 |
-
vidcap.release()
|
54 |
-
return frames
|
55 |
|
56 |
-
# Inference Function
|
57 |
@spaces.GPU
|
58 |
-
def
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
93 |
-
|
|
|
94 |
|
95 |
-
thread = Thread(target=model.generate, kwargs=
|
96 |
thread.start()
|
97 |
|
98 |
-
|
|
|
|
|
99 |
for new_text in streamer:
|
100 |
-
|
|
|
101 |
time.sleep(0.01)
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
if has_result:
|
111 |
-
return gr.update(visible=True), gr.update(visible=False)
|
112 |
-
else:
|
113 |
-
return gr.update(visible=False), gr.update(visible=True)
|
114 |
-
|
115 |
-
# Build the Gradio App
|
116 |
-
def build_app():
|
117 |
-
with gr.Blocks() as demo:
|
118 |
-
gr.Markdown("""
|
119 |
-
# **Gemma-3 Live Video Analysis**
|
120 |
-
Press **Start** to record a short video clip (up to 10 seconds). Stop recording to see the analysis.
|
121 |
-
After the result, press **Start Again** to analyze another clip.
|
122 |
-
""")
|
123 |
-
|
124 |
-
# State to track if a result has been generated
|
125 |
-
has_result = gr.State(value=False)
|
126 |
-
|
127 |
-
with gr.Row():
|
128 |
-
with gr.Column():
|
129 |
-
video = gr.Video(
|
130 |
-
sources=["webcam"],
|
131 |
-
label="Webcam Recording",
|
132 |
-
format="mp4"
|
133 |
)
|
134 |
-
# Two buttons: one for Start, one for Start Again
|
135 |
-
start_btn = gr.Button("Start", visible=True)
|
136 |
-
start_again_btn = gr.Button("Start Again", visible=False)
|
137 |
-
with gr.Column():
|
138 |
-
output_text = gr.Textbox(label="Model Output")
|
139 |
-
|
140 |
-
# When video is recorded and stopped, process it
|
141 |
-
def process_video(video_file, has_result_state):
|
142 |
-
if video_file is None:
|
143 |
-
return "Please record a video.", has_result_state
|
144 |
-
result = video_inference(video_file)
|
145 |
-
return result, True
|
146 |
-
|
147 |
-
video.change(
|
148 |
-
fn=process_video,
|
149 |
-
inputs=[video, has_result],
|
150 |
-
outputs=[output_text, has_result]
|
151 |
-
)
|
152 |
-
|
153 |
-
# Update button visibility based on has_result
|
154 |
-
has_result.change(
|
155 |
-
fn=toggle_button,
|
156 |
-
inputs=has_result,
|
157 |
-
outputs=[start_again_btn, start_btn]
|
158 |
-
)
|
159 |
-
|
160 |
-
# Clicking either button resets the video and output
|
161 |
-
def reset_state():
|
162 |
-
return None, "", False
|
163 |
-
|
164 |
-
start_btn.click(
|
165 |
-
fn=reset_state,
|
166 |
-
inputs=None,
|
167 |
-
outputs=[video, output_text, has_result]
|
168 |
-
)
|
169 |
-
start_again_btn.click(
|
170 |
-
fn=reset_state,
|
171 |
-
inputs=None,
|
172 |
-
outputs=[video, output_text, has_result]
|
173 |
-
)
|
174 |
-
|
175 |
-
return demo
|
176 |
|
177 |
-
|
178 |
-
app = build_app()
|
179 |
-
app.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
|
|
|
|
|
|
|
3 |
from threading import Thread
|
4 |
+
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import time
|
6 |
+
import torch
|
7 |
+
import spaces
|
8 |
+
import subprocess
|
9 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
10 |
|
11 |
+
from io import BytesIO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
|
14 |
+
model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct",
|
15 |
+
_attn_implementation="flash_attention_2",
|
16 |
+
torch_dtype=torch.bfloat16).to("cuda:0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
|
|
18 |
@spaces.GPU
|
19 |
+
def model_inference(
|
20 |
+
input_dict, history, max_tokens
|
21 |
+
):
|
22 |
+
text = input_dict["text"]
|
23 |
+
images = []
|
24 |
+
user_content = []
|
25 |
+
media_queue = []
|
26 |
+
if history == []:
|
27 |
+
text = input_dict["text"].strip()
|
28 |
+
|
29 |
+
for file in input_dict.get("files", []):
|
30 |
+
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
|
31 |
+
media_queue.append({"type": "image", "path": file})
|
32 |
+
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
|
33 |
+
media_queue.append({"type": "video", "path": file})
|
34 |
+
|
35 |
+
if "<image>" in text or "<video>" in text:
|
36 |
+
parts = re.split(r'(<image>|<video>)', text)
|
37 |
+
for part in parts:
|
38 |
+
if part == "<image>" and media_queue:
|
39 |
+
user_content.append(media_queue.pop(0))
|
40 |
+
elif part == "<video>" and media_queue:
|
41 |
+
user_content.append(media_queue.pop(0))
|
42 |
+
elif part.strip():
|
43 |
+
user_content.append({"type": "text", "text": part.strip()})
|
44 |
+
else:
|
45 |
+
user_content.append({"type": "text", "text": text})
|
46 |
+
|
47 |
+
for media in media_queue:
|
48 |
+
user_content.append(media)
|
49 |
+
|
50 |
+
resulting_messages = [{"role": "user", "content": user_content}]
|
51 |
+
|
52 |
+
elif len(history) > 0:
|
53 |
+
resulting_messages = []
|
54 |
+
user_content = []
|
55 |
+
media_queue = []
|
56 |
+
for hist in history:
|
57 |
+
if hist["role"] == "user" and isinstance(hist["content"], tuple):
|
58 |
+
file_name = hist["content"][0]
|
59 |
+
if file_name.endswith((".png", ".jpg", ".jpeg")):
|
60 |
+
media_queue.append({"type": "image", "path": file_name})
|
61 |
+
elif file_name.endswith(".mp4"):
|
62 |
+
media_queue.append({"type": "video", "path": file_name})
|
63 |
+
|
64 |
+
for hist in history:
|
65 |
+
if hist["role"] == "user" and isinstance(hist["content"], str):
|
66 |
+
text = hist["content"]
|
67 |
+
parts = re.split(r'(<image>|<video>)', text)
|
68 |
+
|
69 |
+
for part in parts:
|
70 |
+
if part == "<image>" and media_queue:
|
71 |
+
user_content.append(media_queue.pop(0))
|
72 |
+
elif part == "<video>" and media_queue:
|
73 |
+
user_content.append(media_queue.pop(0))
|
74 |
+
elif part.strip():
|
75 |
+
user_content.append({"type": "text", "text": part.strip()})
|
76 |
+
|
77 |
+
elif hist["role"] == "assistant":
|
78 |
+
resulting_messages.append({
|
79 |
+
"role": "user",
|
80 |
+
"content": user_content
|
81 |
+
})
|
82 |
+
resulting_messages.append({
|
83 |
+
"role": "assistant",
|
84 |
+
"content": [{"type": "text", "text": hist["content"]}]
|
85 |
+
})
|
86 |
+
user_content = []
|
87 |
+
|
88 |
+
if text == "" and not images:
|
89 |
+
gr.Error("Please input a query and optionally image(s).")
|
90 |
+
|
91 |
+
if text == "" and images:
|
92 |
+
gr.Error("Please input a text query along the images(s).")
|
93 |
+
print("resulting_messages", resulting_messages)
|
94 |
+
inputs = processor.apply_chat_template(
|
95 |
+
resulting_messages,
|
96 |
+
add_generation_prompt=True,
|
97 |
+
tokenize=True,
|
98 |
+
return_dict=True,
|
99 |
+
return_tensors="pt",
|
100 |
+
)
|
101 |
+
|
102 |
+
inputs = inputs.to(model.device)
|
103 |
+
|
104 |
+
# Generate
|
105 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
106 |
+
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens)
|
107 |
+
generated_text = ""
|
108 |
|
109 |
+
thread = Thread(target=model.generate, kwargs=generation_args)
|
110 |
thread.start()
|
111 |
|
112 |
+
yield "..."
|
113 |
+
buffer = ""
|
114 |
+
|
115 |
for new_text in streamer:
|
116 |
+
buffer += new_text
|
117 |
+
generated_text_without_prompt = buffer
|
118 |
time.sleep(0.01)
|
119 |
+
yield buffer
|
120 |
+
|
121 |
+
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM2: The Smollest Video Model Ever 📺",
|
122 |
+
description="Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. To get started, upload an image and text. This demo doesn't use history for the chat, so every chat you start is a new conversation.",
|
123 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", ".mp4"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
|
124 |
+
cache_examples=False,
|
125 |
+
additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")],
|
126 |
+
type="messages"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
+
demo.launch(debug=True)
|
|
|
|