""" app.py A unified Gradio chat application for Multimodal OCR Granite Vision. Commands (enter these as a prefix in the text input): - @rag: For retrieval‐augmented generation (e.g. PDF or text-based queries). - @granite: For image understanding. - @video-infer: For video understanding (video is downsampled into frames). The app uses gr.MultimodalTextbox to support text input together with file uploads. """ import os import time import uuid import random import logging from threading import Thread from pathlib import Path from datetime import datetime, timezone import torch import numpy as np import cv2 from PIL import Image import gradio as gr from transformers import ( AutoModelForCausalLM, AutoTokenizer, AutoProcessor, AutoModelForVision2Seq, ) # --------------------------- # Utility functions and setup # --------------------------- def get_device(): if torch.backends.mps.is_available(): return "mps" # mac GPU elif torch.cuda.is_available(): return "cuda" else: return "cpu" device = get_device() logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", ) def downsample_video(video_path): """ Downsamples the video into 10 evenly spaced frames. Returns a list of (PIL Image, timestamp in seconds) tuples. """ vidcap = cv2.VideoCapture(video_path) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vidcap.get(cv2.CAP_PROP_FPS) frames = [] frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) for i in frame_indices: vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, image = vidcap.read() if success: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(image) timestamp = round(i / fps, 2) frames.append((pil_image, timestamp)) vidcap.release() return frames # --------------------------- # HF Embedding and LLM classes # --------------------------- class HFEmbedding: def __init__(self, model_id: str): self.model_name = model_id logging.info(f"Loading embeddings model from: {self.model_name}") # Using langchain_huggingface for embeddings from langchain_huggingface import HuggingFaceEmbeddings # ensure installed # For simplicity, force CPU (adjust if needed) self.embeddings_service = HuggingFaceEmbeddings( model_name=self.model_name, model_kwargs={"device": "cpu"}, ) def embed_documents(self, texts: list[str]) -> list[list[float]]: return self.embeddings_service.embed_documents(texts) def embed_query(self, text: str) -> list[float]: return self.embed_documents([text])[0] class HFLLM: def __init__(self, model_name: str): self.device = device self.model_name = model_name logging.info("Loading HF language model...") self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device) def generate(self, prompt: str) -> list: # Tokenize prompt and generate text model_inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device) generated_ids = self.model.generate(**model_inputs, max_new_tokens=1024) generated_texts = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=False) # Extract answer assuming a marker in the generated text response = [{"answer": generated_texts[0].split("<|end_of_role|>")[-1].split("<|end_of_text|>")[0]}] return response # --------------------------- # LightRAG: Retrieval-Augmented Generation (Dummy) # --------------------------- class LightRAG: def __init__(self, config: dict): self.config = config # Load generation and embedding models immediately (or lazy load as needed) self.gen_model = HFLLM(config['generation_model_id']) self._embedding_model = HFEmbedding(config['embedding_model_id']) def search(self, query: str, top_n: int = 5) -> list: # Dummy retrieval: In practice, integrate with a vector store from langchain_core.documents import Document # ensure langchain_core is installed dummy_doc = Document( page_content="Dummy context for query: " + query, metadata={"type": "text"} ) return [dummy_doc] def generate(self, query, context=None): if context is None: context = [] # Build prompt by concatenating retrieved context with the query. prompt = "" for doc in context: prompt += doc.page_content + "\n" prompt += "\nQuestion: " + query + "\nAnswer:" results = self.gen_model.generate(prompt) answer = results[0]["answer"] return answer, prompt # Global configuration for LightRAG rag_config = { "embedding_model_id": "ibm-granite/granite-embedding-125m-english", "generation_model_id": "ibm-granite/granite-3.1-8b-instruct", } light_rag = LightRAG(rag_config) # --------------------------- # Granite Vision functions (for image and video) # --------------------------- # Set the Granite Vision model ID (adjust version as needed) GRANITE_MODEL_ID = "ibm-granite/granite-vision-3.2-2b" granite_processor = None granite_model = None def load_granite_model(): """Lazy load the Granite vision processor and model.""" global granite_processor, granite_model if granite_processor is None or granite_model is None: granite_processor = AutoProcessor.from_pretrained(GRANITE_MODEL_ID) granite_model = AutoModelForVision2Seq.from_pretrained(GRANITE_MODEL_ID, device_map="auto").to(device) return granite_processor, granite_model def create_single_turn(image, text): """ Creates a single-turn conversation message. If an image is provided, it is added along with the text. """ if image is None: return {"role": "user", "content": [{"type": "text", "text": text}]} else: return {"role": "user", "content": [{"type": "image", "image": image}, {"type": "text", "text": text}]} def generate_granite(image, prompt_text, max_new_tokens=1024, temperature=0.7, top_p=0.85, top_k=50, repetition_penalty=1.05): """ Generates a response from the Granite Vision model given an image and prompt. """ processor, model = load_granite_model() conversation = [create_single_turn(image, prompt_text)] inputs = processor.apply_chat_template( conversation, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(device) output = model.generate( **inputs, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, ) decoded = processor.decode(output[0], skip_special_tokens=True) parts = decoded.strip().split("<|assistant|>") return parts[-1].strip() def generate_video_infer(video_path, prompt_text, max_new_tokens=1024, temperature=0.7, top_p=0.85, top_k=50, repetition_penalty=1.05): """ Processes a video file by downsampling frames and sending them along with a prompt to the Granite Vision model. """ frames = downsample_video(video_path) conversation_content = [] for img, ts in frames: conversation_content.append({"type": "text", "text": f"Frame at {ts} sec:"}) conversation_content.append({"type": "image", "image": img}) conversation_content.append({"type": "text", "text": prompt_text}) conversation = [{"role": "user", "content": conversation_content}] processor, model = load_granite_model() inputs = processor.apply_chat_template( conversation, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(device) output = model.generate( **inputs, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, repetition_penalty=repetition_penalty, ) decoded = processor.decode(output[0], skip_special_tokens=True) parts = decoded.strip().split("<|assistant|>") return parts[-1].strip() # --------------------------- # Unified generation function for ChatInterface # --------------------------- def generate(input_dict: dict, chat_history: list[dict], max_new_tokens: int, temperature: float, top_p: float, top_k: int, repetition_penalty: float): """ Chat function that inspects the input text for special commands and routes: - @rag: Uses the RAG pipeline. - @granite: Uses Granite Vision for image understanding. - @video-infer: Uses Granite Vision for video processing. """ text = input_dict["text"] files = input_dict.get("files", []) lower_text = text.strip().lower() # Optionally yield a progress message yield "Processing your request..." time.sleep(1) # simulate processing delay if lower_text.startswith("@rag"): query = text[len("@rag"):].strip() logging.info(f"@rag command: {query}") context = light_rag.search(query) answer, _ = light_rag.generate(query, context) yield answer elif lower_text.startswith("@granite"): prompt_text = text[len("@granite"):].strip() logging.info(f"@granite command: {prompt_text}") if files: # Expecting an image file (as a PIL image) image = files[0] answer = generate_granite(image, prompt_text, max_new_tokens, temperature, top_p, top_k, repetition_penalty) yield answer else: yield "No image provided for @granite command." elif lower_text.startswith("@video-infer"): prompt_text = text[len("@video-infer"):].strip() logging.info(f"@video-infer command: {prompt_text}") if files: # Expecting a video file (the file path) video_path = files[0] answer = generate_video_infer(video_path, prompt_text, max_new_tokens, temperature, top_p, top_k, repetition_penalty) yield answer else: yield "No video provided for @video-infer command." else: # Default behavior: use RAG pipeline for text query. query = text.strip() logging.info(f"Default text query: {query}") context = light_rag.search(query) answer, _ = light_rag.generate(query, context) yield answer # --------------------------- # Gradio ChatInterface using MultimodalTextbox # --------------------------- demo = gr.ChatInterface( fn=generate, additional_inputs=[ gr.Slider(label="Max new tokens", minimum=1, maximum=2048, step=1, value=1024), gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), gr.Slider(label="Top-p", minimum=0.1, maximum=1.0, step=0.1, value=0.85), gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.05), ], examples=[ # Examples show how to use the command prefixes. [{"text": "@rag What models are available in Watsonx?"}], [{"text": "@granite Describe the image", "files": [str(Path("examples") / "sample_image.png")]}], [{"text": "@video-infer Summarize the event in the video", "files": [str(Path("examples") / "sample_video.mp4")]}], ], cache_examples=False, type="messages", description=( "# **Multimodal OCR Granite Vision**\n\n" "Enter a command in the text input (with optional file uploads) using one of the following prefixes:\n\n" "- **@rag**: For retrieval-augmented generation (e.g. PDFs, documents).\n" "- **@granite**: For image understanding using Granite Vision.\n" "- **@video-infer**: For video understanding (video is downsampled into frames).\n\n" "For example:\n```\n@rag What is the revenue trend?\n```\n```\n@granite Describe this image\n```\n```\n@video-infer Summarize the event in this video\n```" ), fill_height=True, textbox=gr.MultimodalTextbox( label="Query Input", file_types=["image", "video", "pdf"], file_count="multiple", placeholder="@rag, @granite, or @video-infer followed by your prompt" ), stop_btn="Stop Generation", multimodal=True, ) if __name__ == "__main__": demo.queue(max_size=20).launch()