import gradio as gr from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer from threading import Thread import re import time import torch import spaces import subprocess import uuid import cv2 import numpy as np from PIL import Image from io import BytesIO # Install flash-attn subprocess.run( 'pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True ) # Load processor and model. processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct") model = AutoModelForImageTextToText.from_pretrained( "HuggingFaceTB/SmolVLM2-2.2B-Instruct", _attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16 ).to("cuda:0") def downsample_video(video_path): """ Extracts 10 evenly spaced frames from the video at video_path. Each frame is converted from BGR to RGB and returned as a PIL Image. """ vidcap = cv2.VideoCapture(video_path) total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = vidcap.get(cv2.CAP_PROP_FPS) frames = [] if total_frames <= 0 or fps <= 0: vidcap.release() return frames frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) for i in frame_indices: vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) success, frame = vidcap.read() if success: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(frame) frames.append((pil_image, round(i / fps, 2))) vidcap.release() return frames @spaces.GPU def model_inference(input_dict, history, max_tokens): text = input_dict["text"] user_content = [] media_queue = [] # Process input files. for file in input_dict.get("files", []): if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")): media_queue.append({"type": "image", "path": file}) elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")): # Extract frames from video using OpenCV. frames = downsample_video(file) for frame, timestamp in frames: temp_file = f"video_frame_{uuid.uuid4().hex}.png" frame.save(temp_file) media_queue.append({"type": "image", "path": temp_file}) # Build the conversation messages. if not history: text = text.strip() # Use only the "" token for inserting images. if "" in text: parts = re.split(r'()', text) for part in parts: if part == "" and media_queue: user_content.append(media_queue.pop(0)) elif part.strip(): user_content.append({"type": "text", "text": part.strip()}) else: user_content.append({"type": "text", "text": text}) for media in media_queue: user_content.append(media) resulting_messages = [{"role": "user", "content": user_content}] else: resulting_messages = [] user_content = [] media_queue = [] # Process history: now only image files are expected. for hist in history: if hist["role"] == "user" and isinstance(hist["content"], tuple): file_name = hist["content"][0] if file_name.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")): media_queue.append({"type": "image", "path": file_name}) for hist in history: if hist["role"] == "user" and isinstance(hist["content"], str): text = hist["content"] parts = re.split(r'()', text) for part in parts: if part == "" and media_queue: user_content.append(media_queue.pop(0)) elif part.strip(): user_content.append({"type": "text", "text": part.strip()}) elif hist["role"] == "assistant": resulting_messages.append({ "role": "user", "content": user_content }) resulting_messages.append({ "role": "assistant", "content": [{"type": "text", "text": hist["content"]}] }) user_content = [] if text == "": gr.Error("Please input a query and optionally image(s).") print("resulting_messages", resulting_messages) inputs = processor.apply_chat_template( resulting_messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", ) inputs = inputs.to(model.device) # Generate response with streaming. streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_tokens) thread = Thread(target=model.generate, kwargs=generation_args) thread.start() yield "..." buffer = "" for new_text in streamer: buffer += new_text time.sleep(0.01) yield buffer examples = [ [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], [{"text": "What art era does this artpiece belong to?", "files": ["example_images/rococo.jpg"]}], [{"text": "Describe this image.", "files": ["example_images/mosque.jpg"]}], [{"text": "When was this purchase made and how much did it cost?", "files": ["example_images/fiche.jpg"]}], [{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}], [{"text": "What is happening in the video?", "files": ["example_images/short.mp4"]}], ] demo = gr.ChatInterface( fn=model_inference, title="SmolVLM2: The Smollest Video Model Ever 📺", description=( "Play with [SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) in this demo. " "To get started, upload an image and text or try one of the examples. " "This demo doesn't use history for the chat, so every chat you start is a new conversation." ), examples=examples, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, cache_examples=False, additional_inputs=[gr.Slider(minimum=100, maximum=500, step=50, value=200, label="Max Tokens")], type="messages" ) demo.launch(debug=True)