File size: 8,763 Bytes
e14e6d1
c6a1ef4
e14e6d1
c6a1ef4
ec8d7fa
 
 
 
a85c4cf
ec8d7fa
 
221d2b6
b3a3e40
ec8d7fa
 
 
 
 
c6a1ef4
ec8d7fa
c6a1ef4
ec8d7fa
c6a1ef4
e412787
 
5e0feb4
c6a1ef4
ec8d7fa
 
9e55e35
 
 
c6a1ef4
9e55e35
 
 
 
 
 
5e0feb4
9e55e35
 
 
ec8d7fa
 
83c1dff
ec8d7fa
c6a1ef4
 
53342b7
c6a1ef4
 
ec8d7fa
c6a1ef4
ec8d7fa
 
bae4d72
c6a1ef4
ec8d7fa
c6a1ef4
 
9e55e35
c6a1ef4
ec8d7fa
c6a1ef4
ec8d7fa
 
 
ec94f98
9e55e35
1d9dc27
 
 
 
 
c6a1ef4
9e55e35
c6a1ef4
9e55e35
 
 
 
 
 
 
 
 
 
1d9dc27
 
c6a1ef4
ec8d7fa
1d9dc27
 
 
 
 
 
 
 
 
 
 
 
83c1dff
 
1d9dc27
83c1dff
1d9dc27
 
9e55e35
1d9dc27
 
 
 
 
 
 
c6a1ef4
1d9dc27
9e55e35
1d9dc27
 
 
 
 
 
9e55e35
1d9dc27
9e55e35
 
 
5e0feb4
9e55e35
 
 
 
 
 
1d9dc27
 
c6a1ef4
 
1d9dc27
 
 
 
 
83c1dff
 
1d9dc27
 
 
 
 
 
 
 
83c1dff
1d9dc27
83c1dff
1d9dc27
 
 
 
 
 
 
 
 
 
 
9e55e35
1d9dc27
 
 
 
 
 
 
ec8d7fa
fa728b7
 
10dcd42
6bf88e9
fa728b7
 
 
ff5cc66
 
fa728b7
 
47dfd6a
 
 
 
 
 
 
 
 
 
c6a1ef4
47dfd6a
9e55e35
c6a1ef4
 
1d9dc27
 
11e7c4e
09f3d9e
47dfd6a
fa728b7
 
 
 
1d9dc27
11e7c4e
09f3d9e
47dfd6a
fa728b7
 
 
 
def7066
1d9dc27
 
 
 
 
 
c6a1ef4
 
23c8dfa
5e0feb4
23c8dfa
 
36fb870
1d9dc27
 
9e55e35
1d9dc27
 
 
 
9e55e35
c6a1ef4
8110123
 
 
e75c6cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load Cosmos-Reason1-7B
MODEL_ID_M = "nvidia/Cosmos-Reason1-7B"
processor_m = AutoProcessor.from_pretrained(MODEL_ID_M, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_M,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

# Load MiMo-VL-7B-RL
MODEL_ID_X = "XiaomiMiMo/MiMo-VL-7B-SFT"
processor_x = AutoProcessor.from_pretrained(MODEL_ID_X, trust_remote_code=True)
model_x = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID_X,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

def downsample_video(video_path):
    """
    Downsamples the video to evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

@spaces.GPU
def generate_image(model_name: str, text: str, image: Image.Image,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for image input.
    """
    if model_name == "Cosmos-Reason1-7B":
        processor = processor_m
        model = model_m
    elif model_name == "MiMo-VL-7B-RL":
        processor = processor_x
        model = model_x
    else:
        yield "Invalid model selected."
        return

    if image is None:
        yield "Please upload an image."
        return

    messages = [{
        "role": "user",
        "content": [
            {"type": "image", "image": image},
            {"type": "text", "text": text},
        ]
    }]
    prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    inputs = processor(
        text=[prompt_full],
        images=[image],
        return_tensors="pt",
        padding=True,
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to("cuda")
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

@spaces.GPU
def generate_video(model_name: str, text: str, video_path: str,
                   max_new_tokens: int = 1024,
                   temperature: float = 0.6,
                   top_p: float = 0.9,
                   top_k: int = 50,
                   repetition_penalty: float = 1.2):
    """
    Generates responses using the selected model for video input.
    """
    if model_name == "Cosmos-Reason1-7B":
        processor = processor_m
        model = model_m
    elif model_name == "MiMo-VL-7B-SFT":
        processor = processor_x
        model = model_x
    else:
        yield "Invalid model selected."
        return

    if video_path is None:
        yield "Please upload a video."
        return

    frames = downsample_video(video_path)
    messages = [
        {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
        {"role": "user", "content": [{"type": "text", "text": text}]}
    ]
    for frame in frames:
        image, timestamp = frame
        messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
        messages[1]["content"].append({"type": "image", "image": image})
    inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt",
        truncation=False,
        max_length=MAX_INPUT_TOKEN_LENGTH
    ).to("cuda")
    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        "streamer": streamer,
        "max_new_tokens": max_new_tokens,
        "do_sample": True,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repetition_penalty": repetition_penalty,
    }
    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("<|im_end|>", "")
        time.sleep(0.01)
        yield buffer

# Define examples for image and video inference
image_examples = [
    ["Perform OCR on the text in the image.", "images/1.jpg"],
    ["Explain the scene in detail.", "images/2.jpg"]
]

video_examples = [
    ["Explain the Ad in Detail", "videos/1.mp4"],
    ["Identify the main actions in the video", "videos/2.mp4"]
]

css = """
.submit-btn {
    background-color: #2980b9 !important;
    color: white !important;
}
.submit-btn:hover {
    background-color: #3498db !important;
}
"""

# Create the Gradio Interface
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
    gr.Markdown("# **Vision-Language Model Inference**")
    with gr.Row():
        with gr.Column():
            with gr.Tabs():
                with gr.TabItem("Image Inference"):
                    image_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    image_upload = gr.Image(type="pil", label="Image")
                    image_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=image_examples,
                        inputs=[image_query, image_upload]
                    )
                with gr.TabItem("Video Inference"):
                    video_query = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
                    video_upload = gr.Video(label="Video")
                    video_submit = gr.Button("Submit", elem_classes="submit-btn")
                    gr.Examples(
                        examples=video_examples,
                        inputs=[video_query, video_upload]
                    )

            with gr.Accordion("Advanced options", open=False):
                max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
                temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
                top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
                top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
                repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
        with gr.Column():
            output = gr.Textbox(label="Output", interactive=False)
            model_choice = gr.Dropdown(
                choices=["Cosmos-Reason1-7B", "MiMo-VL-7B-SFT"],
                label="Select Model",
            value="Cosmos-Reason1-7B")

    image_submit.click(
        fn=generate_image,
        inputs=[model_choice, image_query, image_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )
    video_submit.click(
        fn=generate_video,
        inputs=[model_choice, video_query, video_upload, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )

if __name__ == "__main__":
    demo.queue(max_size=30).launch(share=True, ssr_mode=False, show_error=True)