File size: 7,870 Bytes
e14e6d1
c6a1ef4
e14e6d1
c6a1ef4
ec8d7fa
 
 
 
a85c4cf
ec8d7fa
 
221d2b6
b3a3e40
ec8d7fa
 
 
 
 
c6a1ef4
ec8d7fa
c6a1ef4
ec8d7fa
c6a1ef4
 
 
ec8d7fa
c6a1ef4
ec8d7fa
 
 
 
 
c6a1ef4
ec8d7fa
 
 
c6a1ef4
ec8d7fa
c6a1ef4
 
 
 
 
ec8d7fa
c6a1ef4
ec8d7fa
 
c6a1ef4
 
 
ec8d7fa
c6a1ef4
 
 
 
ec8d7fa
c6a1ef4
ec8d7fa
 
 
 
c6a1ef4
 
 
 
 
 
 
 
 
 
ec8d7fa
c6a1ef4
 
 
 
 
 
 
8110123
ec94f98
c6a1ef4
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8d7fa
c6a1ef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8d7fa
c6a1ef4
 
 
ec8d7fa
c6a1ef4
 
 
 
ec8d7fa
 
c6a1ef4
 
 
 
ec8d7fa
c6a1ef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8d7fa
c6a1ef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8d7fa
c6a1ef4
 
 
ec8d7fa
c6a1ef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8d7fa
c6a1ef4
ec8d7fa
c6a1ef4
 
8110123
 
 
c6a1ef4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2

from transformers import (
    Qwen2_5_VLForConditionalGeneration,
    AutoProcessor,
    TextIteratorStreamer,
)
from transformers.image_utils import load_image

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load multimodal processor and model (Callisto OCR3)
MODEL_ID = "nvidia/Cosmos-Reason1-7B"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2_5_VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

def downsample_video(video_path):
    """
    Downsamples the video to 10 evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    # Sample 10 evenly spaced frames.
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # Convert BGR to RGB
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

def progress_bar_html(label: str) -> str:
    """
    Returns an HTML snippet for a thin progress bar with a label.
    The progress bar is styled as a light cyan animated bar.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #B0E0E6; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

@spaces.GPU
def generate(text: str, files: list,
             max_new_tokens: int = 1024,
             temperature: float = 0.6,
             top_p: float = 0.9,
             top_k: int = 50,
             repetition_penalty: float = 1.2):
    """
    Generates responses using the Qwen2VL model for image and video inputs.
    - If images are provided, performs image inference.
    - If videos are provided, performs video inference by downsampling to frames.
    """
    if not files:
        yield "Please upload an image or video for inference."
        return

    # Determine if the files are images or videos
    image_files = [f for f in files if f.lower().endswith(('.png', '.jpg', '.jpeg', '.bmp', '.gif'))]
    video_files = [f for f in files if f.lower().endswith(('.mp4', '.avi', '.mov', '.mkv'))]

    if image_files and video_files:
        yield "Please upload either images or videos, not both."
        return

    if image_files:
        # Image inference
        images = [load_image(image) for image in image_files]
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(
            text=[prompt_full],
            images=images,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=MAX_INPUT_TOKEN_LENGTH
        ).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing images with cosmos-reasoning")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    elif video_files:
        # Video inference
        video_path = video_files[0]  # Assuming only one video is uploaded
        frames = downsample_video(video_path)
        messages = [
            {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
            {"role": "user", "content": [{"type": "text", "text": text}]}
        ]
        # Append each frame with its timestamp.
        for frame in frames:
            image, timestamp = frame
            image_path = f"video_frame_{uuid.uuid4().hex}.png"
            image.save(image_path)
            messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
            messages[1]["content"].append({"type": "image", "url": image_path})
        inputs = processor.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True,
            return_dict=True,
            return_tensors="pt",
            truncation=True,
            max_length=MAX_INPUT_TOKEN_LENGTH
        ).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing video with cosmos-reasoning")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        yield "Unsupported file type. Please upload images or videos."

# Create the Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# **cosmos-reason1 by nvidia**")
    with gr.Row():
        with gr.Column():
            text_input = gr.Textbox(label="Query Input", placeholder="Enter your query here...")
            file_input = gr.File(label="Upload Image or Video", file_types=["image", "video"], file_count="multiple")
            max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
            temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
            top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
            top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
            repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
            submit_btn = gr.Button("Submit")
        with gr.Column():
            output = gr.Textbox(label="Output", interactive=False)

    submit_btn.click(
        fn=generate,
        inputs=[text_input, file_input, max_new_tokens, temperature, top_p, top_k, repetition_penalty],
        outputs=output
    )

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)