Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,334 Bytes
fa1521a ed7e269 bf46246 fa1521a ed7e269 fa1521a 253b45c fa1521a c364dc6 fa1521a 22f4724 fa1521a a1ba266 fa1521a a1ba266 fa1521a bbe0d04 fa1521a ed7e269 fa1521a 253b45c fa1521a bbe0d04 fa1521a 5ba9463 fa1521a 253b45c fa1521a e097cc4 fa1521a 5ba9463 fa1521a e097cc4 fa1521a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
import uuid
from typing import Tuple
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the base model pipeline
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype).to(device)
# Load the Flux Realism LoRA model
lora_repo = "XLabs-AI/flux-RealismLora"
pipe.load_lora_weights(lora_repo)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
style_list = [
{
"name": "8K",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "4K",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "HD",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "BW",
"prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast",
},
{
"name": "Polar",
"prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic",
},
{
"name": "Mustard",
"prompt": "Duotone style Mustard applied to {prompt}",
},
{
"name": "Cinema",
"prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting",
},
{
"name": "Coral",
"prompt": "Duotone style Coral applied to {prompt}",
},
{
"name": "Scrap",
"prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles",
},
{
"name": "Fuchsia",
"prompt": "Duotone style Fuchsia tone applied to {prompt}",
},
{
"name": "Violet",
"prompt": "Duotone style Violet applied to {prompt}",
},
{
"name": "Pastel",
"prompt": "Duotone style Pastel applied to {prompt}",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
},
]
css = """
#col-container {
margin: 0 auto;
max-width: 530px;
}
"""
styles = {k["name"]: k["prompt"] for k in style_list}
DEFAULT_STYLE_NAME = "Style Zero"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> str:
if style_name in styles:
p = styles[style_name]
positive = p.format(prompt=positive)
return positive
def set_wallpaper_size(size):
if size == "Mobile (1080x1920)":
return 1080, 1920
elif size == "Desktop (1920x1080)":
return 1920, 1080
elif size == "Extented (1920x512)":
return 1920, 512
elif size == "Headers (1080x512)":
return 1080, 512
else:
return 1024, 1024 # Default return if none of the conditions are met
@spaces.GPU(duration=60, enable_queue=True)
def infer(prompt, seed=42, randomize_seed=False, wallpaper_size="Desktop(1920x1080)", num_inference_steps=4, style_name=DEFAULT_STYLE_NAME, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
width, height = set_wallpaper_size(wallpaper_size)
styled_prompt = apply_style(style_name, prompt)
options = {
"prompt": styled_prompt,
"width": width,
"height": height,
"guidance_scale": 0.0,
"num_inference_steps": num_inference_steps,
"generator": generator,
}
torch.cuda.empty_cache()
images = pipe(**options).images
grid_img = Image.new('RGB', (width, height))
grid_img.paste(images[0], (0, 0))
unique_name = str(uuid.uuid4()) + ".png"
grid_img.save(unique_name)
return unique_name, seed
examples = [
"chocolate dripping from a donut a yellow background",
"cold coffee in a cup bokeh --ar 85:128 --style",
"an anime illustration of a wiener schnitzel",
"a delicious ceviche cheesecake slice, ultra-hd+",
]
def load_predefined_images1():
predefined_images1 = [
"assets/ww.webp",
"assets/xx.webp",
"assets/yy.webp",
]
return predefined_images1
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 SIM""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Row(visible=True):
wallpaper_size = gr.Radio(
choices=["Mobile (1080x1920)", "Desktop (1920x1080)", "Extented (1920x512)", "Headers (1080x512)", "Default (1024x1024)"],
label="Pixel Size(x*y)",
value="Default (1024x1024)"
)
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Accordion("Advanced Settings", open=True):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples=False,
)
gr.on(
triggers=[prompt.submit, run_button.click],
fn=infer,
inputs=[prompt, seed, randomize_seed, wallpaper_size, num_inference_steps, style_selection],
outputs=[result, seed]
)
gr.Markdown("### Image Sample")
predefined_gallery = gr.Gallery(label="## Images Sample", columns=3, show_label=False, value=load_predefined_images1())
gr.Markdown("**Disclaimer/Note:**")
gr.Markdown("🍕Model used in the space <a href='https://huggingface.co/black-forest-labs/FLUX.1-schnell' target='_blank'>black-forest-labs/FLUX.1-schnell</a>. More: 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]")
gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
demo.launch() |