Spaces:
Running
on
Zero
Running
on
Zero
prithivMLmods
commited on
Commit
•
3eed408
1
Parent(s):
a304821
Create app.txt
Browse files
app.txt
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import torch
|
6 |
+
from diffusers import DiffusionPipeline
|
7 |
+
from PIL import Image
|
8 |
+
import uuid
|
9 |
+
from typing import Tuple
|
10 |
+
|
11 |
+
dtype = torch.bfloat16
|
12 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
13 |
+
|
14 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)
|
15 |
+
|
16 |
+
MAX_SEED = np.iinfo(np.int32).max
|
17 |
+
MAX_IMAGE_SIZE = 2048
|
18 |
+
|
19 |
+
style_list = [
|
20 |
+
{
|
21 |
+
"name": "8K",
|
22 |
+
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"name": "4K",
|
26 |
+
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"name": "HD",
|
30 |
+
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"name": "BW",
|
34 |
+
"prompt": "black and white collage of {prompt}. monochromatic, timeless, classic, dramatic contrast",
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"name": "Polar",
|
38 |
+
"prompt": "collage of polaroid photos featuring {prompt}. vintage style, high contrast, nostalgic, instant film aesthetic",
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"name": "Mustard",
|
42 |
+
"prompt": "Duotone style Mustard applied to {prompt}",
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"name": "Cinema",
|
46 |
+
"prompt": "cinematic collage of {prompt}. film stills, movie posters, dramatic lighting",
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"name": "Coral",
|
50 |
+
"prompt": "Duotone style Coral applied to {prompt}",
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"name": "Scrap",
|
54 |
+
"prompt": "scrapbook style collage of {prompt}. mixed media, hand-cut elements, textures, paper, stickers, doodles",
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"name": "Fuchsia",
|
58 |
+
"prompt": "Duotone style Fuchsia tone applied to {prompt}",
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"name": "Violet",
|
62 |
+
"prompt": "Duotone style Violet applied to {prompt}",
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"name": "Pastel",
|
66 |
+
"prompt": "Duotone style Pastel applied to {prompt}",
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"name": "Style Zero",
|
70 |
+
"prompt": "{prompt}",
|
71 |
+
},
|
72 |
+
]
|
73 |
+
|
74 |
+
css="""
|
75 |
+
#col-container {
|
76 |
+
margin: 0 auto;
|
77 |
+
max-width: 530px;
|
78 |
+
}
|
79 |
+
"""
|
80 |
+
|
81 |
+
styles = {k["name"]: k["prompt"] for k in style_list}
|
82 |
+
DEFAULT_STYLE_NAME = "Style Zero"
|
83 |
+
STYLE_NAMES = list(styles.keys())
|
84 |
+
|
85 |
+
def apply_style(style_name: str, positive: str) -> str:
|
86 |
+
if style_name in styles:
|
87 |
+
p = styles[style_name]
|
88 |
+
positive = p.format(prompt=positive)
|
89 |
+
return positive
|
90 |
+
|
91 |
+
def set_wallpaper_size(size):
|
92 |
+
if size == "Mobile (1080x1920)":
|
93 |
+
return 1080, 1920
|
94 |
+
elif size == "Desktop (1920x1080)":
|
95 |
+
return 1920, 1080
|
96 |
+
elif size == "Extented (1920x512)":
|
97 |
+
return 1920, 512
|
98 |
+
elif size == "Headers (1080x512)":
|
99 |
+
return 1080, 512
|
100 |
+
else:
|
101 |
+
return 1024, 1024 # Default return if none of the conditions are met
|
102 |
+
|
103 |
+
@spaces.GPU(duration=60, enable_queue=True)
|
104 |
+
def infer(prompt, seed=42, randomize_seed=False, wallpaper_size="Desktop(1920x1080)", num_inference_steps=4, style_name=DEFAULT_STYLE_NAME, progress=gr.Progress(track_tqdm=True)):
|
105 |
+
if randomize_seed:
|
106 |
+
seed = random.randint(0, MAX_SEED)
|
107 |
+
generator = torch.Generator().manual_seed(seed)
|
108 |
+
|
109 |
+
width, height = set_wallpaper_size(wallpaper_size)
|
110 |
+
|
111 |
+
styled_prompt = apply_style(style_name, prompt)
|
112 |
+
|
113 |
+
options = {
|
114 |
+
"prompt": styled_prompt,
|
115 |
+
"width": width,
|
116 |
+
"height": height,
|
117 |
+
"guidance_scale": 0.0,
|
118 |
+
"num_inference_steps": num_inference_steps,
|
119 |
+
"generator": generator,
|
120 |
+
}
|
121 |
+
|
122 |
+
torch.cuda.empty_cache()
|
123 |
+
images = pipe(**options).images
|
124 |
+
|
125 |
+
grid_img = Image.new('RGB', (width, height))
|
126 |
+
grid_img.paste(images[0], (0, 0))
|
127 |
+
|
128 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
129 |
+
grid_img.save(unique_name)
|
130 |
+
return unique_name, seed
|
131 |
+
|
132 |
+
examples = [
|
133 |
+
|
134 |
+
"chocolate dripping from a donut a yellow background",
|
135 |
+
"cold coffee in a cup bokeh --ar 85:128 --style",
|
136 |
+
"an anime illustration of a wiener schnitzel",
|
137 |
+
"a delicious ceviche cheesecake slice, ultra-hd+",
|
138 |
+
]
|
139 |
+
|
140 |
+
def load_predefined_images1():
|
141 |
+
predefined_images1 = [
|
142 |
+
"assets/ww.webp",
|
143 |
+
"assets/xx.webp",
|
144 |
+
"assets/yy.webp",
|
145 |
+
]
|
146 |
+
return predefined_images1
|
147 |
+
|
148 |
+
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
|
149 |
+
|
150 |
+
with gr.Column(elem_id="col-container"):
|
151 |
+
gr.Markdown(f"""# FLUX.1 SIM""")
|
152 |
+
with gr.Row():
|
153 |
+
prompt = gr.Text(
|
154 |
+
label="Prompt",
|
155 |
+
show_label=False,
|
156 |
+
max_lines=1,
|
157 |
+
placeholder="Enter your prompt",
|
158 |
+
container=False,
|
159 |
+
)
|
160 |
+
run_button = gr.Button("Run", scale=0)
|
161 |
+
result = gr.Image(label="Result", show_label=False)
|
162 |
+
|
163 |
+
with gr.Row(visible=True):
|
164 |
+
wallpaper_size = gr.Radio(
|
165 |
+
choices=["Mobile (1080x1920)", "Desktop (1920x1080)", "Extented (1920x512)", "Headers (1080x512)", "Default (1024x1024)"],
|
166 |
+
label="Pixel Size(x*y)",
|
167 |
+
value="Default (1024x1024)"
|
168 |
+
)
|
169 |
+
|
170 |
+
with gr.Row(visible=True):
|
171 |
+
style_selection = gr.Radio(
|
172 |
+
show_label=True,
|
173 |
+
container=True,
|
174 |
+
interactive=True,
|
175 |
+
choices=STYLE_NAMES,
|
176 |
+
value=DEFAULT_STYLE_NAME,
|
177 |
+
label="Quality Style",
|
178 |
+
)
|
179 |
+
with gr.Accordion("Advanced Settings", open=True):
|
180 |
+
seed = gr.Slider(
|
181 |
+
label="Seed",
|
182 |
+
minimum=0,
|
183 |
+
maximum=MAX_SEED,
|
184 |
+
step=1,
|
185 |
+
value=0,
|
186 |
+
)
|
187 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
188 |
+
with gr.Row():
|
189 |
+
num_inference_steps = gr.Slider(
|
190 |
+
label="Number of inference steps",
|
191 |
+
minimum=1,
|
192 |
+
maximum=50,
|
193 |
+
step=1,
|
194 |
+
value=4,
|
195 |
+
)
|
196 |
+
|
197 |
+
gr.Examples(
|
198 |
+
examples=examples,
|
199 |
+
fn=infer,
|
200 |
+
inputs=[prompt],
|
201 |
+
outputs=[result, seed],
|
202 |
+
cache_examples=False,
|
203 |
+
)
|
204 |
+
|
205 |
+
gr.on(
|
206 |
+
triggers=[prompt.submit, run_button.click],
|
207 |
+
fn=infer,
|
208 |
+
inputs=[prompt, seed, randomize_seed, wallpaper_size, num_inference_steps, style_selection],
|
209 |
+
outputs=[result, seed]
|
210 |
+
)
|
211 |
+
|
212 |
+
gr.Markdown("### Image Sample")
|
213 |
+
predefined_gallery = gr.Gallery(label="## Images Sample", columns=3, show_label=False, value=load_predefined_images1())
|
214 |
+
|
215 |
+
gr.Markdown("**Disclaimer/Note:**")
|
216 |
+
|
217 |
+
gr.Markdown("🍕Model used in the space <a href='https://huggingface.co/black-forest-labs/FLUX.1-schnell' target='_blank'>black-forest-labs/FLUX.1-schnell</a>. More: 12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]")
|
218 |
+
gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.")
|
219 |
+
|
220 |
+
demo.launch()
|