import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import subprocess
# Install flash-attn with our environment flag (if needed)
subprocess.run(
'pip install flash-attn --no-build-isolation',
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
shell=True
)
# -------------------------------
# FLUX.1 IMAGE GENERATION SETUP
# -------------------------------
MAX_SEED = np.iinfo(np.int32).max
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return its path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# Load Flux.1 pipeline and LoRA weights
from diffusers import DiffusionPipeline
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
trigger_word = "Super Realism" # Leave blank if no trigger word is needed.
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
# Define style prompts for Flux.1
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
},
]
styles = {s["name"]: s["prompt"] for s in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str) -> str:
return styles.get(style_name, styles[DEFAULT_STYLE_NAME]).replace("{prompt}", positive)
@spaces.GPU(duration=60, enable_queue=True)
def generate_image_flux(
prompt: str,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
progress=gr.Progress(track_tqdm=True),
):
"""Generate an image using the Flux.1 pipeline with a chosen style."""
seed = int(randomize_seed_fn(seed, randomize_seed))
positive_prompt = apply_style(style_name, prompt)
if trigger_word:
positive_prompt = f"{trigger_word} {positive_prompt}"
images = pipe(
prompt=positive_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=28,
num_images_per_prompt=1,
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
return image_paths, seed
# -------------------------------
# SMOLVLM2 SETUP (Default Text/Multimodal Model)
# -------------------------------
from transformers import AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
# Load the SmolVLM2 processor and model with flash attention enabled.
smol_processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct")
smol_model = AutoModelForImageTextToText.from_pretrained(
"HuggingFaceTB/SmolVLM2-2.2B-Instruct",
_attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16
).to("cuda:0")
# -------------------------------
# UTILITY FUNCTIONS
# -------------------------------
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for an animated progress bar with a given label.
"""
return f'''
'''
# TTS voices (if using TTS commands)
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save the output as MP3."""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
# -------------------------------
# CHAT / MULTIMODAL GENERATION FUNCTION
# -------------------------------
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_tokens: int = 200,
):
"""
Generates chatbot responses using SmolVLM2 by default—with support for multimodal inputs and TTS.
Special commands:
- "@image": triggers image generation using the Flux.1 pipeline.
- "@tts1" or "@tts2": triggers text-to-speech after generation.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
# If the query starts with "@image", use Flux.1 to generate an image.
if text.strip().lower().startswith("@image"):
prompt = text[len("@image"):].strip()
yield progress_bar_html("Hold Tight Generating Flux.1 Image")
image_paths, used_seed = generate_image_flux(
prompt=prompt,
seed=1,
width=1024,
height=1024,
guidance_scale=3,
randomize_seed=True,
style_name=DEFAULT_STYLE_NAME,
progress=gr.Progress(track_tqdm=True),
)
yield gr.Image(image_paths[0])
return
# Handle TTS commands if present.
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice = None
if is_tts:
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
# Now use SmolVLM2 for chat/multimodal text generation.
yield "Processing with SmolVLM2"
# Build conversation messages based on input and history.
user_content = []
media_queue = []
if chat_history == []:
text = text.strip()
for file in files:
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
media_queue.append({"type": "video", "path": file})
if "" in text or "