File size: 8,281 Bytes
f366c08
f318216
f366c08
36b95af
06274a0
 
 
 
f366c08
0a9e16c
f366c08
36b95af
 
9199c0d
14fd229
f366c08
06274a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82b5762
06274a0
14fd229
 
06274a0
36b95af
f366c08
36b95af
15a7c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b95af
 
 
0a9e16c
 
 
 
 
 
838eb55
0a9e16c
 
b639ea4
36b95af
 
 
 
 
 
 
8655006
5be9ee2
36b95af
0a9e16c
f366c08
 
36b95af
 
 
f366c08
36b95af
 
 
 
 
0a9e16c
 
 
 
 
 
 
 
 
 
 
14fd229
0a9e16c
 
 
8655006
0a9e16c
 
 
8655006
0a9e16c
805f947
0a9e16c
f366c08
06274a0
 
 
f366c08
f12c9a6
 
0332354
f12c9a6
f366c08
 
ba069c6
 
 
 
 
f366c08
ba069c6
57709d9
ba069c6
ce50a6a
5c240d0
0a9e16c
57709d9
b79eb08
ce50a6a
 
 
 
 
f366c08
805f947
ce50a6a
 
805f947
0a9e16c
f12c9a6
ce50a6a
 
 
 
 
 
 
 
f366c08
0a9e16c
 
838eb55
0a9e16c
 
 
 
b79eb08
 
ce50a6a
 
 
f12c9a6
b79eb08
57709d9
36b95af
ce50a6a
 
 
 
57709d9
b79eb08
57709d9
ce50a6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b79eb08
ce50a6a
 
 
 
 
 
 
5be9ee2
ce50a6a
 
74fb0c6
 
 
 
f12c9a6
0a9e16c
b79eb08
 
36b95af
f366c08
 
 
 
36b95af
f366c08
 
 
36b95af
15a7c48
0a9e16c
f366c08
 
 
d588458
f366c08
8655006
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import spaces
import numpy as np
import random
from diffusers import (
    DiffusionPipeline, AutoencoderTiny, AutoencoderKL, 
    AutoPipelineForImage2Image, FluxPipeline, FlowMatchEulerDiscreteScheduler
)
import torch
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"

torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

# Load primary diffusion model and assign a smaller VAE for faster real-time previewing
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch_dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, vae=taef1).to(device)

# Set up for image-to-image pipeline with good VAE and smaller encoder for efficient preview
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
    model_repo_id,
    vae=good_vae,
    transformer=pipe.transformer,
    text_encoder=pipe.text_encoder,
    tokenizer=pipe.tokenizer,
    text_encoder_2=pipe.text_encoder_2,
    tokenizer_2=pipe.tokenizer_2,
    torch_dtype=torch_dtype
)

# Load LoRA weights and set the scale for "hyper-realistic" prompt style
pipe.load_lora_weights("prithivMLmods/SD3.5-Large-Turbo-HyperRealistic-LoRA", weight_name="SD3.5-4Step-Large-Turbo-HyperRealistic-LoRA.safetensors")
trigger_word = "hyper realistic"
pipe.fuse_lora(lora_scale=1.0)

MAX_SEED = 2**32 - 1
MAX_IMAGE_SIZE = 1024

# Define styles
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

STYLE_NAMES = [style["name"] for style in style_list]
DEFAULT_STYLE_NAME = STYLE_NAMES[0]

grid_sizes = {
    "2x1": (2, 1),
    "1x2": (1, 2),
    "2x2": (2, 2),
    "2x3": (2, 3),
    "3x2": (3, 2),
    "1x1": (1, 1)
}

@spaces.GPU(duration=60)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=7.5,
    num_inference_steps=4,
    style="Style Zero",
    grid_size="1x1",
    progress=gr.Progress(track_tqdm=True),
):
    selected_style = next(s for s in style_list if s["name"] == style)
    styled_prompt = selected_style["prompt"].format(prompt=prompt)
    styled_negative_prompt = selected_style["negative_prompt"]

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    grid_size_x, grid_size_y = grid_sizes.get(grid_size, (1, 1))
    num_images = grid_size_x * grid_size_y

    options = {
        "prompt": styled_prompt,
        "negative_prompt": styled_negative_prompt,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "width": width,
        "height": height,
        "generator": generator,
        "num_images_per_prompt": num_images,
    }

    torch.cuda.empty_cache()  # Clear GPU memory
    result = pipe(**options)

    grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))

    for i, img in enumerate(result.images[:num_images]):
        grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))

    return grid_img, seed

# Setup for real-time image generation
pipe.flux_pipe_call_that_returns_an_iterable_of_images = pipe.flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

examples = [
    "A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
    "An anime illustration of a wiener schnitzel --style raw5, 4K",
    "Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic",
    "A cat holding a sign that says hello world --ar 85:128 --v 6.0 --style raw"
]

css = '''
.gradio-container{max-width: 585px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

with gr.Blocks(css=css, theme="prithivMLmods/Minecraft-Theme") as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## SD3.5 TURBO")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Row(visible=False):
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Quality Style",
            )

        with gr.Row(visible=True):
            grid_size_selection = gr.Dropdown(
                choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
                value="1x1",
                label="Grid Size"
            )

        with gr.Accordion("Advanced Settings", open=False, visible=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=0.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(examples=examples, 
                    inputs=[prompt], 
                    outputs=[result, seed], 
                    fn=infer, 
                    cache_examples=False)

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            style_selection,
            grid_size_selection,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()