Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,281 Bytes
f366c08 f318216 f366c08 36b95af 06274a0 f366c08 0a9e16c f366c08 36b95af 9199c0d 14fd229 f366c08 06274a0 82b5762 06274a0 14fd229 06274a0 36b95af f366c08 36b95af 15a7c48 36b95af 0a9e16c 838eb55 0a9e16c b639ea4 36b95af 8655006 5be9ee2 36b95af 0a9e16c f366c08 36b95af f366c08 36b95af 0a9e16c 14fd229 0a9e16c 8655006 0a9e16c 8655006 0a9e16c 805f947 0a9e16c f366c08 06274a0 f366c08 f12c9a6 0332354 f12c9a6 f366c08 ba069c6 f366c08 ba069c6 57709d9 ba069c6 ce50a6a 5c240d0 0a9e16c 57709d9 b79eb08 ce50a6a f366c08 805f947 ce50a6a 805f947 0a9e16c f12c9a6 ce50a6a f366c08 0a9e16c 838eb55 0a9e16c b79eb08 ce50a6a f12c9a6 b79eb08 57709d9 36b95af ce50a6a 57709d9 b79eb08 57709d9 ce50a6a b79eb08 ce50a6a 5be9ee2 ce50a6a 74fb0c6 f12c9a6 0a9e16c b79eb08 36b95af f366c08 36b95af f366c08 36b95af 15a7c48 0a9e16c f366c08 d588458 f366c08 8655006 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import spaces
import numpy as np
import random
from diffusers import (
DiffusionPipeline, AutoencoderTiny, AutoencoderKL,
AutoPipelineForImage2Image, FluxPipeline, FlowMatchEulerDiscreteScheduler
)
import torch
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
# Load primary diffusion model and assign a smaller VAE for faster real-time previewing
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch_dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae", torch_dtype=torch_dtype).to(device)
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype, vae=taef1).to(device)
# Set up for image-to-image pipeline with good VAE and smaller encoder for efficient preview
pipe_i2i = AutoPipelineForImage2Image.from_pretrained(
model_repo_id,
vae=good_vae,
transformer=pipe.transformer,
text_encoder=pipe.text_encoder,
tokenizer=pipe.tokenizer,
text_encoder_2=pipe.text_encoder_2,
tokenizer_2=pipe.tokenizer_2,
torch_dtype=torch_dtype
)
# Load LoRA weights and set the scale for "hyper-realistic" prompt style
pipe.load_lora_weights("prithivMLmods/SD3.5-Large-Turbo-HyperRealistic-LoRA", weight_name="SD3.5-4Step-Large-Turbo-HyperRealistic-LoRA.safetensors")
trigger_word = "hyper realistic"
pipe.fuse_lora(lora_scale=1.0)
MAX_SEED = 2**32 - 1
MAX_IMAGE_SIZE = 1024
# Define styles
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
STYLE_NAMES = [style["name"] for style in style_list]
DEFAULT_STYLE_NAME = STYLE_NAMES[0]
grid_sizes = {
"2x1": (2, 1),
"1x2": (1, 2),
"2x2": (2, 2),
"2x3": (2, 3),
"3x2": (3, 2),
"1x1": (1, 1)
}
@spaces.GPU(duration=60)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=7.5,
num_inference_steps=4,
style="Style Zero",
grid_size="1x1",
progress=gr.Progress(track_tqdm=True),
):
selected_style = next(s for s in style_list if s["name"] == style)
styled_prompt = selected_style["prompt"].format(prompt=prompt)
styled_negative_prompt = selected_style["negative_prompt"]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
grid_size_x, grid_size_y = grid_sizes.get(grid_size, (1, 1))
num_images = grid_size_x * grid_size_y
options = {
"prompt": styled_prompt,
"negative_prompt": styled_negative_prompt,
"guidance_scale": guidance_scale,
"num_inference_steps": num_inference_steps,
"width": width,
"height": height,
"generator": generator,
"num_images_per_prompt": num_images,
}
torch.cuda.empty_cache() # Clear GPU memory
result = pipe(**options)
grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))
for i, img in enumerate(result.images[:num_images]):
grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))
return grid_img, seed
# Setup for real-time image generation
pipe.flux_pipe_call_that_returns_an_iterable_of_images = pipe.flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
examples = [
"A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
"An anime illustration of a wiener schnitzel --style raw5, 4K",
"Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic",
"A cat holding a sign that says hello world --ar 85:128 --v 6.0 --style raw"
]
css = '''
.gradio-container{max-width: 585px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css, theme="prithivMLmods/Minecraft-Theme") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## SD3.5 TURBO")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Row(visible=False):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Row(visible=True):
grid_size_selection = gr.Dropdown(
choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
value="1x1",
label="Grid Size"
)
with gr.Accordion("Advanced Settings", open=False, visible=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(examples=examples,
inputs=[prompt],
outputs=[result, seed],
fn=infer,
cache_examples=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
style_selection,
grid_size_selection,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |