File size: 6,655 Bytes
f366c08
 
36b95af
9efc887
 
36b95af
f366c08
36b95af
f366c08
 
ba069c6
 
36b95af
 
9199c0d
36b95af
 
 
 
f366c08
36b95af
 
f366c08
 
36b95af
f366c08
36b95af
15a7c48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36b95af
 
 
9efc887
 
 
 
 
 
 
 
 
ba069c6
36b95af
 
 
 
 
 
 
 
 
 
9efc887
f366c08
 
15a7c48
36b95af
 
 
f366c08
36b95af
 
 
 
 
9efc887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f366c08
 
36b95af
f366c08
 
ba069c6
 
 
 
 
f366c08
ba069c6
 
 
36b95af
 
 
 
 
 
 
 
822c939
36b95af
822c939
36b95af
2f57ec0
 
9efc887
 
 
 
 
 
 
2f57ec0
 
 
 
 
 
 
 
822c939
36b95af
 
 
 
 
 
f366c08
36b95af
 
 
 
 
 
 
f366c08
 
36b95af
9efc887
36b95af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9efc887
 
36b95af
 
f366c08
36b95af
 
f366c08
 
 
 
36b95af
f366c08
 
 
36b95af
15a7c48
9efc887
f366c08
 
 
d588458
f366c08
36b95af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import gradio as gr
import numpy as np
import random
import uuid
from PIL import Image

import spaces
from diffusers import DiffusionPipeline
import torch

DESCRIPTIONx = """## SD-3.5 LARGE TURBO """

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"

if torch.cuda.is_available():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Define styles
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

STYLE_NAMES = [style["name"] for style in style_list]
DEFAULT_STYLE_NAME = STYLE_NAMES[0]

grid_sizes = {
    "2x1": (2, 1),
    "1x2": (1, 2),
    "2x2": (2, 2),
    "2x3": (2, 3),
    "3x2": (3, 2),
    "1x1": (1, 1)
}

@spaces.GPU(duration=60, enable_queue=True)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=0.0,
    num_inference_steps=4,
    style="Style Zero",
    grid_size="1x1",
    progress=gr.Progress(track_tqdm=True),
):
    
    selected_style = next(s for s in style_list if s["name"] == style)
    styled_prompt = selected_style["prompt"].format(prompt=prompt)
    styled_negative_prompt = selected_style["negative_prompt"]

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    grid_size_x, grid_size_y = grid_sizes.get(grid_size, (2, 2))
    num_images = grid_size_x * grid_size_y

    images = []
    for _ in range(num_images):
        image = pipe(
            prompt=styled_prompt,
            negative_prompt=styled_negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]
        images.append(image)

    # Create a grid image
    grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))

    for i, img in enumerate(images[:num_images]):
        grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))

    # Save the grid image
    unique_name = str(uuid.uuid4()) + ".png"
    grid_img.save(unique_name)
    
    return unique_name, seed

examples = [
    "A capybara wearing a suit holding a sign that reads Hello World",
]

css = '''
.gradio-container{max-width: 585px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''
with gr.Blocks(css=css, theme="prithivMLmods/Minecraft-Theme") as demo:
    gr.Markdown(DESCRIPTIONx)  
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)
        
        with gr.Row(visible=True):
            grid_size_selection = gr.Dropdown(
                choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
                value="1x1",
                label="Grid Size"
            )

        with gr.Row(visible=True):     
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Quality Style",
            )

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=512,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=7.5,
                    step=0.1,
                    value=0.0,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )



        gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
        
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            style_selection,
            grid_size_selection,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()