Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,418 Bytes
f366c08 36b95af 9efc887 f366c08 36b95af f366c08 ba069c6 36b95af 9199c0d 36b95af f366c08 36b95af f366c08 36b95af f366c08 36b95af 15a7c48 36b95af 9efc887 ba069c6 36b95af 9efc887 f366c08 15a7c48 36b95af f366c08 36b95af 9efc887 f366c08 36b95af f366c08 ba069c6 f366c08 ba069c6 57709d9 ba069c6 515e62b 344dc28 2f57ec0 515e62b 57709d9 9efc887 515e62b 57709d9 822c939 515e62b 57709d9 f366c08 36b95af 57709d9 f366c08 515e62b 57709d9 36b95af 57709d9 b2fd7f3 57709d9 31f3926 57709d9 36b95af f366c08 36b95af f366c08 36b95af f366c08 36b95af 15a7c48 9efc887 f366c08 d588458 f366c08 36b95af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import numpy as np
import random
import uuid
from PIL import Image
import spaces
from diffusers import DiffusionPipeline
import torch
DESCRIPTIONx = """## SD-3.5 LARGE TURBO """
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Define styles
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
STYLE_NAMES = [style["name"] for style in style_list]
DEFAULT_STYLE_NAME = STYLE_NAMES[0]
grid_sizes = {
"2x1": (2, 1),
"1x2": (1, 2),
"2x2": (2, 2),
"2x3": (2, 3),
"3x2": (3, 2),
"1x1": (1, 1)
}
@spaces.GPU(duration=60, enable_queue=True)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=0.0,
num_inference_steps=4,
style="Style Zero",
grid_size="1x1",
progress=gr.Progress(track_tqdm=True),
):
selected_style = next(s for s in style_list if s["name"] == style)
styled_prompt = selected_style["prompt"].format(prompt=prompt)
styled_negative_prompt = selected_style["negative_prompt"]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
grid_size_x, grid_size_y = grid_sizes.get(grid_size, (2, 2))
num_images = grid_size_x * grid_size_y
images = []
for _ in range(num_images):
image = pipe(
prompt=styled_prompt,
negative_prompt=styled_negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
images.append(image)
# Create a grid image
grid_img = Image.new('RGB', (width * grid_size_x, height * grid_size_y))
for i, img in enumerate(images[:num_images]):
grid_img.paste(img, (i % grid_size_x * width, i // grid_size_x * height))
# Save the grid image
unique_name = str(uuid.uuid4()) + ".png"
grid_img.save(unique_name)
return unique_name, seed
examples = [
"A capybara wearing a suit holding a sign that reads Hello World",
]
css = '''
.gradio-container{max-width: 585px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=css, theme="prithivMLmods/Minecraft-Theme") as demo:
gr.Markdown(DESCRIPTIONx)
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
with gr.Row(visible=True):
grid_size_selection = gr.Dropdown(
choices=["2x1", "1x2", "2x2", "2x3", "3x2", "1x1"],
value="1x1",
label="Grid Size"
)
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
fn=infer,
cache_examples=True
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
style_selection,
grid_size_selection,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |