Spaces:
Running
Running
import gradio as gr | |
import requests | |
from PIL import Image | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
import time | |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") | |
def caption(img, min_len, max_len): | |
raw_image = Image.open(img).convert('RGB') | |
inputs = processor(raw_image, return_tensors="pt") | |
out = model.generate(**inputs, min_length=min_len, max_length=max_len) | |
return processor.decode(out[0], skip_special_tokens=True) | |
def greet(img, min_len, max_len): | |
start = time.time() | |
result = caption(img, min_len, max_len) | |
end = time.time() | |
total_time = str(end - start) | |
result = result + '\n' + total_time + ' seconds' | |
return result | |
iface = gr.Interface(fn=greet, | |
title='Image Captioning with BLIP', | |
description="Generate captions for images using the BLIP model.", | |
inputs=[gr.Image(type='filepath', label='Image'), | |
gr.Slider(label='Minimum Length', minimum=1, maximum=1000, value=30), | |
gr.Slider(label='Maximum Length', minimum=1, maximum=1000, value=100)], | |
outputs=gr.Textbox(label='Caption') | |
# Add examples | |
iface.examples = [ | |
["images/1.png", 30, 100], | |
["images/2.png", 30, 100], | |
["images/3.png", 30, 100] | |
] | |
iface.launch() |