Spaces:
Running
Running
import gradio as gr | |
import subprocess | |
import torch | |
from PIL import Image | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
try: | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, check=True, shell=True) | |
except subprocess.CalledProcessError as e: | |
print(f"Error installing flash-attn: {e}") | |
print("Continuing without flash-attn.") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
vision_language_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval() | |
vision_language_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True) | |
def describe_image(uploaded_image): | |
""" | |
Generates a detailed description of the input image. | |
Args: | |
uploaded_image (PIL.Image.Image or numpy.ndarray): The image to describe. | |
Returns: | |
str: A detailed textual description of the image. | |
""" | |
if not isinstance(uploaded_image, Image.Image): | |
uploaded_image = Image.fromarray(uploaded_image) | |
inputs = vision_language_processor(text="<MORE_DETAILED_CAPTION>", images=uploaded_image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
generated_ids = vision_language_model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = vision_language_processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
processed_description = vision_language_processor.post_process_generation( | |
generated_text, | |
task="<MORE_DETAILED_CAPTION>", | |
image_size=(uploaded_image.width, uploaded_image.height) | |
) | |
image_description = processed_description["<MORE_DETAILED_CAPTION>"] | |
print("\nImage description generated!:", image_description) | |
return image_description | |
image_description_interface = gr.Interface( | |
fn=describe_image, | |
inputs=gr.Image(label="Upload Image"), | |
outputs=gr.Textbox(label="Generated Caption", lines=3, show_copy_button=True), | |
live=False, | |
) | |
image_description_interface.launch(debug=True) |