Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,11 @@ import numpy as np
|
|
14 |
from PIL import Image
|
15 |
import edge_tts
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
from transformers import (
|
18 |
AutoModelForCausalLM,
|
19 |
AutoTokenizer,
|
@@ -24,14 +29,6 @@ from transformers import (
|
|
24 |
from transformers.image_utils import load_image
|
25 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
26 |
|
27 |
-
# Load the reasoning model interface from sambanova_gradio
|
28 |
-
try:
|
29 |
-
import sambanova_gradio
|
30 |
-
reasoning_interface = gr.load("DeepSeek-R1-Distill-Llama-70B", src=sambanova_gradio.registry, accept_token=True)
|
31 |
-
except Exception as e:
|
32 |
-
reasoning_interface = None
|
33 |
-
print("Reasoning model could not be loaded:", e)
|
34 |
-
|
35 |
MAX_MAX_NEW_TOKENS = 2048
|
36 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
37 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
@@ -194,8 +191,8 @@ def generate(
|
|
194 |
):
|
195 |
text = input_dict["text"]
|
196 |
files = input_dict.get("files", [])
|
197 |
-
lower_text = text.lower().strip()
|
198 |
|
|
|
199 |
# Check if the prompt is an image generation command using model flags.
|
200 |
if (lower_text.startswith("@lightningv5") or
|
201 |
lower_text.startswith("@lightningv4") or
|
@@ -248,16 +245,14 @@ def generate(
|
|
248 |
yield gr.Image(image_path)
|
249 |
return
|
250 |
|
251 |
-
# New reasoning
|
252 |
elif lower_text.startswith("@reasoning"):
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
result = reasoning_interface.predict(prompt_clean)
|
260 |
-
yield result
|
261 |
return
|
262 |
|
263 |
# Otherwise, handle text/chat (and TTS) generation.
|
|
|
14 |
from PIL import Image
|
15 |
import edge_tts
|
16 |
|
17 |
+
import sambanova_gradio
|
18 |
+
# Load the reasoning model from sambanova_gradio.
|
19 |
+
# This returns a callable interface for inference.
|
20 |
+
reasoning_model = gr.load("DeepSeek-R1-Distill-Llama-70B", src=sambanova_gradio.registry, accept_token=True)
|
21 |
+
|
22 |
from transformers import (
|
23 |
AutoModelForCausalLM,
|
24 |
AutoTokenizer,
|
|
|
29 |
from transformers.image_utils import load_image
|
30 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
MAX_MAX_NEW_TOKENS = 2048
|
33 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
34 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
191 |
):
|
192 |
text = input_dict["text"]
|
193 |
files = input_dict.get("files", [])
|
|
|
194 |
|
195 |
+
lower_text = text.lower().strip()
|
196 |
# Check if the prompt is an image generation command using model flags.
|
197 |
if (lower_text.startswith("@lightningv5") or
|
198 |
lower_text.startswith("@lightningv4") or
|
|
|
245 |
yield gr.Image(image_path)
|
246 |
return
|
247 |
|
248 |
+
# New reasoning branch.
|
249 |
elif lower_text.startswith("@reasoning"):
|
250 |
+
# Remove the reasoning flag and clean the prompt.
|
251 |
+
prompt_clean = re.sub(r"@reasoning", "", text, flags=re.IGNORECASE).strip().strip('"')
|
252 |
+
yield "Processing reasoning request..."
|
253 |
+
# Call the reasoning model (this call might be synchronous; adjust if needed).
|
254 |
+
reasoning_response = reasoning_model(prompt_clean)
|
255 |
+
yield reasoning_response
|
|
|
|
|
256 |
return
|
257 |
|
258 |
# Otherwise, handle text/chat (and TTS) generation.
|