prithivMLmods commited on
Commit
b55b5cd
·
verified ·
1 Parent(s): 8e47763

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -18
app.py CHANGED
@@ -14,6 +14,11 @@ import numpy as np
14
  from PIL import Image
15
  import edge_tts
16
 
 
 
 
 
 
17
  from transformers import (
18
  AutoModelForCausalLM,
19
  AutoTokenizer,
@@ -24,14 +29,6 @@ from transformers import (
24
  from transformers.image_utils import load_image
25
  from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
26
 
27
- # Load the reasoning model interface from sambanova_gradio
28
- try:
29
- import sambanova_gradio
30
- reasoning_interface = gr.load("DeepSeek-R1-Distill-Llama-70B", src=sambanova_gradio.registry, accept_token=True)
31
- except Exception as e:
32
- reasoning_interface = None
33
- print("Reasoning model could not be loaded:", e)
34
-
35
  MAX_MAX_NEW_TOKENS = 2048
36
  DEFAULT_MAX_NEW_TOKENS = 1024
37
  MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
@@ -194,8 +191,8 @@ def generate(
194
  ):
195
  text = input_dict["text"]
196
  files = input_dict.get("files", [])
197
- lower_text = text.lower().strip()
198
 
 
199
  # Check if the prompt is an image generation command using model flags.
200
  if (lower_text.startswith("@lightningv5") or
201
  lower_text.startswith("@lightningv4") or
@@ -248,16 +245,14 @@ def generate(
248
  yield gr.Image(image_path)
249
  return
250
 
251
- # New reasoning feature.
252
  elif lower_text.startswith("@reasoning"):
253
- prompt_clean = re.sub(r"@reasoning", "", text, flags=re.IGNORECASE).strip()
254
- if reasoning_interface is None:
255
- yield "Reasoning model is not available."
256
- return
257
- yield "Reasoning in progress..."
258
- # Call the reasoning model's prediction.
259
- result = reasoning_interface.predict(prompt_clean)
260
- yield result
261
  return
262
 
263
  # Otherwise, handle text/chat (and TTS) generation.
 
14
  from PIL import Image
15
  import edge_tts
16
 
17
+ import sambanova_gradio
18
+ # Load the reasoning model from sambanova_gradio.
19
+ # This returns a callable interface for inference.
20
+ reasoning_model = gr.load("DeepSeek-R1-Distill-Llama-70B", src=sambanova_gradio.registry, accept_token=True)
21
+
22
  from transformers import (
23
  AutoModelForCausalLM,
24
  AutoTokenizer,
 
29
  from transformers.image_utils import load_image
30
  from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
31
 
 
 
 
 
 
 
 
 
32
  MAX_MAX_NEW_TOKENS = 2048
33
  DEFAULT_MAX_NEW_TOKENS = 1024
34
  MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
 
191
  ):
192
  text = input_dict["text"]
193
  files = input_dict.get("files", [])
 
194
 
195
+ lower_text = text.lower().strip()
196
  # Check if the prompt is an image generation command using model flags.
197
  if (lower_text.startswith("@lightningv5") or
198
  lower_text.startswith("@lightningv4") or
 
245
  yield gr.Image(image_path)
246
  return
247
 
248
+ # New reasoning branch.
249
  elif lower_text.startswith("@reasoning"):
250
+ # Remove the reasoning flag and clean the prompt.
251
+ prompt_clean = re.sub(r"@reasoning", "", text, flags=re.IGNORECASE).strip().strip('"')
252
+ yield "Processing reasoning request..."
253
+ # Call the reasoning model (this call might be synchronous; adjust if needed).
254
+ reasoning_response = reasoning_model(prompt_clean)
255
+ yield reasoning_response
 
 
256
  return
257
 
258
  # Otherwise, handle text/chat (and TTS) generation.