prithivMLmods's picture
Update app.py
2741d7d verified
raw
history blame
8.85 kB
import os
import re
import uuid
import json
import time
import random
import asyncio
import cv2
from datetime import datetime, timedelta
from threading import Thread
import gradio as gr
import numpy as np
from PIL import Image
from huggingface_hub import hf_hub_download
from vllm import LLM
from vllm.sampling_params import SamplingParams
# -----------------------------------------------------------------------------
# Helper functions
# -----------------------------------------------------------------------------
def progress_bar_html(label: str) -> str:
"""Return an HTML snippet for a progress bar."""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path: str, num_frames: int = 10):
"""
Downsample a video to extract a set number of evenly spaced frames.
Returns a list of tuples (PIL.Image, timestamp in seconds).
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Get evenly spaced frame indices.
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
# Convert BGR to RGB and then to a PIL Image.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def load_system_prompt(repo_id: str, filename: str) -> str:
"""
Load the system prompt from the given Hugging Face Hub repo file,
and format it with the model name and current dates.
"""
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
model_name = repo_id.split("/")[-1]
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
# -----------------------------------------------------------------------------
# Global Settings and Model Initialization
# -----------------------------------------------------------------------------
# Model details (adjust as needed)
MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
# Load the system prompt from HF Hub (make sure SYSTEM_PROMPT.txt exists in the repo)
SYSTEM_PROMPT = load_system_prompt(MODEL_ID, "SYSTEM_PROMPT.txt")
# If you prefer a hardcoded system prompt, you can use:
# SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, and ends with an ASCII cat."
# Initialize the Mistral LLM via vllm.
# Note: Running this model on GPU may require very high VRAM.
llm = LLM(model=MODEL_ID, tokenizer_mode="mistral")
# -----------------------------------------------------------------------------
# Main Generation Function
# -----------------------------------------------------------------------------
def generate(
input_dict: dict,
chat_history: list,
max_new_tokens: int = 512,
temperature: float = 0.15,
top_p: float = 0.9,
top_k: int = 50,
):
"""
The main generation function for the Mistral chatbot.
It supports:
- Text-only inference.
- Image inference (attaches image file paths).
- Video inference (extracts and attaches sampled video frames).
"""
text = input_dict["text"]
files = input_dict.get("files", [])
# Prepare the conversation with a system prompt.
messages = [
{"role": "system", "content": SYSTEM_PROMPT}
]
# Check if any file is provided
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
if files:
# If any file is a video, use video inference branch.
if any(str(f).lower().endswith(video_extensions) for f in files):
# Remove any @video-infer tag if present.
prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"')
video_path = files[0] # currently process the first video file
frames = downsample_video(video_path)
# Build a list that contains the prompt plus each frame information.
user_content = [{"type": "text", "text": prompt_clean}]
for frame in frames:
image, timestamp = frame
# Save the frame to a temporary file.
image_path = f"video_frame_{uuid.uuid4().hex}.png"
image.save(image_path)
user_content.append({"type": "text", "text": f"Frame at {timestamp} seconds:"})
user_content.append({"type": "image_path", "image_path": image_path})
messages.append({"role": "user", "content": user_content})
else:
# Assume provided files are images.
prompt_clean = re.sub(r"@mistral", "", text, flags=re.IGNORECASE).strip().strip('"')
user_content = [{"type": "text", "text": prompt_clean}]
for file in files:
try:
image = Image.open(file)
image_path = f"image_{uuid.uuid4().hex}.png"
image.save(image_path)
user_content.append({"type": "image_path", "image_path": image_path})
except Exception as e:
user_content.append({"type": "text", "text": f"Could not open file {file}"})
messages.append({"role": "user", "content": user_content})
else:
# Text-only branch.
messages.append({"role": "user", "content": [{"type": "text", "text": text}]})
# Show a progress bar before generating.
yield progress_bar_html("Processing with Mistral")
# Set up sampling parameters.
sampling_params = SamplingParams(
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k
)
# Run the chat (synchronously) using vllm.
outputs = llm.chat(messages, sampling_params=sampling_params)
final_response = outputs[0].outputs[0].text
# Simulate streaming output by chunking the result.
buffer = ""
chunk_size = 20 # number of characters per chunk
for i in range(0, len(final_response), chunk_size):
buffer = final_response[: i + chunk_size]
yield buffer
time.sleep(0.05)
return
# -----------------------------------------------------------------------------
# Gradio Interface Setup
# -----------------------------------------------------------------------------
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=1024, step=1, value=512),
gr.Slider(label="Temperature", minimum=0.05, maximum=2.0, step=0.05, value=0.15),
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
],
examples=[
# Example with text only.
["Explain the significance of today in the context of current events."],
# Example with image files (ensure you have valid image paths).
[{
"text": "Describe what you see in the image.",
"files": ["examples/3.jpg"]
}],
# Example with video file (ensure you have a valid video file).
[{
"text": "@video-infer Summarize the events shown in the video.",
"files": ["examples/sample_video.mp4"]
}],
],
cache_examples=False,
type="messages",
description="# **Mistral Multimodal Chatbot** \nSupports text, image (by reference) and video inference. Use @video-infer in your query when providing a video.",
fill_height=True,
textbox=gr.MultimodalTextbox(
label="Query Input",
file_types=["image", "video"],
file_count="multiple",
placeholder="Enter your query here. Tag with @video-infer if using a video file."
),
stop_btn="Stop Generation",
examples_per_page=3,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)