prithivMLmods's picture
Update app.py
e86a765 verified
raw
history blame
11.2 kB
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import re
import time
import torch
import spaces
import ast
import html
import random
import cv2
import numpy as np
import uuid
from PIL import Image, ImageOps
from docling_core.types.doc import DoclingDocument
from docling_core.types.doc.document import DocTagsDocument
# ---------------------------
# Helper Functions
# ---------------------------
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
def downsample_video(video_path, num_frames=10):
"""Downsamples a video to a fixed number of evenly spaced frames."""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Get indices for num_frames evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
# Convert from BGR (OpenCV) to RGB (PIL) and then to PIL Image.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def add_random_padding(image, min_percent=0.1, max_percent=0.10):
image = image.convert("RGB")
width, height = image.size
pad_w_percent = random.uniform(min_percent, max_percent)
pad_h_percent = random.uniform(min_percent, max_percent)
pad_w = int(width * pad_w_percent)
pad_h = int(height * pad_h_percent)
corner_pixel = image.getpixel((0, 0)) # Top-left corner for padding color
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
return padded_image
def normalize_values(text, target_max=500):
def normalize_list(values):
max_value = max(values) if values else 1
return [round((v / max_value) * target_max) for v in values]
def process_match(match):
num_list = ast.literal_eval(match.group(0))
normalized = normalize_list(num_list)
return "".join([f"<loc_{num}>" for num in normalized])
pattern = r"\[([\d\.\s,]+)\]"
normalized_text = re.sub(pattern, process_match, text)
return normalized_text
# ---------------------------
# Model & Processor Setup
# ---------------------------
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
model = AutoModelForVision2Seq.from_pretrained(
"ds4sd/SmolDocling-256M-preview",
torch_dtype=torch.bfloat16,
).to("cuda")
# ---------------------------
# Main Inference Function
# ---------------------------
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict.get("files", [])
# If there are files, check if any is a video
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
if files and any(str(f).lower().endswith(video_extensions) for f in files):
# -------- Video Inference Branch --------
video_file = files[0] # Assume first file is a video
frames = downsample_video(video_file)
if not frames:
yield "Could not process video file."
return
images = [frame[0] for frame in frames]
timestamps = [frame[1] for frame in frames]
# Append frame timestamps to the query text.
text_with_timestamps = text + " " + " ".join([f"Frame at {ts} seconds." for ts in timestamps])
resulting_messages = [{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [{"type": "text", "text": text_with_timestamps}]
}]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt").to("cuda")
yield progress_bar_html("Processing video with SmolDocling")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
buffer = ""
full_output = ""
for new_text in streamer:
full_output += new_text
buffer += html.escape(new_text)
yield buffer
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
if cleaned_output:
doctag_output = cleaned_output
yield cleaned_output
if any(tag in doctag_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
doc = DoclingDocument(name="Document")
if "<chart>" in doctag_output:
doctag_output = doctag_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', doctag_output)
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], images)
doc.load_from_doctags(doctags_doc)
yield f"**MD Output:**\n\n{doc.export_to_markdown()}"
return
elif files:
# -------- Image Inference Branch --------
if len(files) > 1:
if "OTSL" in text or "code" in text:
images = [add_random_padding(load_image(image)) for image in files]
else:
images = [load_image(image) for image in files]
elif len(files) == 1:
if "OTSL" in text or "code" in text:
images = [add_random_padding(load_image(files[0]))]
else:
images = [load_image(files[0])]
resulting_messages = [{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [{"type": "text", "text": text}]
}]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt").to("cuda")
yield progress_bar_html("Processing with SmolDocling")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
full_output = ""
for new_text in streamer:
full_output += new_text
buffer += html.escape(new_text)
yield buffer
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
if cleaned_output:
doctag_output = cleaned_output
yield cleaned_output
if any(tag in doctag_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
doc = DoclingDocument(name="Document")
if "<chart>" in doctag_output:
doctag_output = doctag_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', doctag_output)
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], images)
doc.load_from_doctags(doctags_doc)
yield f"**MD Output:**\n\n{doc.export_to_markdown()}"
return
else:
# -------- Text-Only Inference Branch --------
if text == "":
gr.Error("Please input a query and optionally image(s).")
resulting_messages = [{
"role": "user",
"content": [{"type": "text", "text": text}]
}]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, return_tensors="pt").to("cuda")
yield progress_bar_html("Processing text with SmolDocling")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
full_output = ""
for new_text in streamer:
full_output += new_text
buffer += html.escape(new_text)
yield buffer
cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
if cleaned_output:
yield cleaned_output
return
# ---------------------------
# Gradio Interface Setup
# ---------------------------
examples = [
[{"text": "Convert this page to docling.", "files": ["example_images/2d0fbcc50e88065a040a537b717620e964fb4453314b71d83f3ed3425addcef6.png"]}],
[{"text": "Convert this table to OTSL.", "files": ["example_images/image-2.jpg"]}],
[{"text": "Convert code to text.", "files": ["example_images/7666.jpg"]}],
[{"text": "Convert formula to latex.", "files": ["example_images/2433.jpg"]}],
[{"text": "Convert chart to OTSL.", "files": ["example_images/06236926002285.png"]}],
[{"text": "OCR the text in location [47, 531, 167, 565]", "files": ["example_images/s2w_example.png"]}],
[{"text": "Extract all section header elements on the page.", "files": ["example_images/paper_3.png"]}],
[{"text": "Identify element at location [123, 413, 1059, 1061]", "files": ["example_images/redhat.png"]}],
[{"text": "Convert this page to docling.", "files": ["example_images/gazette_de_france.jpg"]}],
# Example video file (if available)
[{"text": "Describe the events in this video.", "files": ["example_videos/sample_video.mp4"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
title="SmolDocling-256M: Ultra-compact VLM for Document Conversion 💫",
description=(
"Play with [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) in this demo. "
"Upload an image, video, and text query or try one of the examples. Each chat starts a new conversation."
),
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False
)
if __name__ == "__main__":
demo.launch(debug=True)