Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import re | |
import time | |
import torch | |
import spaces | |
import ast | |
import html | |
import random | |
import cv2 | |
import numpy as np | |
import uuid | |
from PIL import Image, ImageOps | |
from docling_core.types.doc import DoclingDocument | |
from docling_core.types.doc.document import DocTagsDocument | |
# --------------------------- | |
# Helper Functions | |
# --------------------------- | |
def progress_bar_html(label: str) -> str: | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
def downsample_video(video_path, num_frames=10): | |
"""Downsamples a video to a fixed number of evenly spaced frames.""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
if total_frames <= 0 or fps <= 0: | |
vidcap.release() | |
return frames | |
# Get indices for num_frames evenly spaced frames. | |
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
# Convert from BGR (OpenCV) to RGB (PIL) and then to PIL Image. | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
def add_random_padding(image, min_percent=0.1, max_percent=0.10): | |
image = image.convert("RGB") | |
width, height = image.size | |
pad_w_percent = random.uniform(min_percent, max_percent) | |
pad_h_percent = random.uniform(min_percent, max_percent) | |
pad_w = int(width * pad_w_percent) | |
pad_h = int(height * pad_h_percent) | |
corner_pixel = image.getpixel((0, 0)) # Top-left corner for padding color | |
padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel) | |
return padded_image | |
def normalize_values(text, target_max=500): | |
def normalize_list(values): | |
max_value = max(values) if values else 1 | |
return [round((v / max_value) * target_max) for v in values] | |
def process_match(match): | |
num_list = ast.literal_eval(match.group(0)) | |
normalized = normalize_list(num_list) | |
return "".join([f"<loc_{num}>" for num in normalized]) | |
pattern = r"\[([\d\.\s,]+)\]" | |
normalized_text = re.sub(pattern, process_match, text) | |
return normalized_text | |
# --------------------------- | |
# Model & Processor Setup | |
# --------------------------- | |
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") | |
model = AutoModelForVision2Seq.from_pretrained( | |
"ds4sd/SmolDocling-256M-preview", | |
torch_dtype=torch.bfloat16, | |
).to("cuda") | |
# --------------------------- | |
# Main Inference Function | |
# --------------------------- | |
def model_inference(input_dict, history): | |
text = input_dict["text"] | |
files = input_dict.get("files", []) | |
# If there are files, check if any is a video | |
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm") | |
if files and any(str(f).lower().endswith(video_extensions) for f in files): | |
# -------- Video Inference Branch -------- | |
video_file = files[0] # Assume first file is a video | |
frames = downsample_video(video_file) | |
if not frames: | |
yield "Could not process video file." | |
return | |
images = [frame[0] for frame in frames] | |
timestamps = [frame[1] for frame in frames] | |
# Append frame timestamps to the query text. | |
text_with_timestamps = text + " " + " ".join([f"Frame at {ts} seconds." for ts in timestamps]) | |
resulting_messages = [{ | |
"role": "user", | |
"content": [{"type": "image"} for _ in range(len(images))] + [{"type": "text", "text": text_with_timestamps}] | |
}] | |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[images], return_tensors="pt").to("cuda") | |
yield progress_bar_html("Processing video with SmolDocling") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False) | |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192) | |
thread = Thread(target=model.generate, kwargs=generation_args) | |
thread.start() | |
buffer = "" | |
full_output = "" | |
for new_text in streamer: | |
full_output += new_text | |
buffer += html.escape(new_text) | |
yield buffer | |
cleaned_output = full_output.replace("<end_of_utterance>", "").strip() | |
if cleaned_output: | |
doctag_output = cleaned_output | |
yield cleaned_output | |
if any(tag in doctag_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]): | |
doc = DoclingDocument(name="Document") | |
if "<chart>" in doctag_output: | |
doctag_output = doctag_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>") | |
doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', doctag_output) | |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], images) | |
doc.load_from_doctags(doctags_doc) | |
yield f"**MD Output:**\n\n{doc.export_to_markdown()}" | |
return | |
elif files: | |
# -------- Image Inference Branch -------- | |
if len(files) > 1: | |
if "OTSL" in text or "code" in text: | |
images = [add_random_padding(load_image(image)) for image in files] | |
else: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
if "OTSL" in text or "code" in text: | |
images = [add_random_padding(load_image(files[0]))] | |
else: | |
images = [load_image(files[0])] | |
resulting_messages = [{ | |
"role": "user", | |
"content": [{"type": "image"} for _ in range(len(images))] + [{"type": "text", "text": text}] | |
}] | |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, images=[images], return_tensors="pt").to("cuda") | |
yield progress_bar_html("Processing with SmolDocling") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False) | |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192) | |
thread = Thread(target=model.generate, kwargs=generation_args) | |
thread.start() | |
yield "..." | |
buffer = "" | |
full_output = "" | |
for new_text in streamer: | |
full_output += new_text | |
buffer += html.escape(new_text) | |
yield buffer | |
cleaned_output = full_output.replace("<end_of_utterance>", "").strip() | |
if cleaned_output: | |
doctag_output = cleaned_output | |
yield cleaned_output | |
if any(tag in doctag_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]): | |
doc = DoclingDocument(name="Document") | |
if "<chart>" in doctag_output: | |
doctag_output = doctag_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>") | |
doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', doctag_output) | |
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], images) | |
doc.load_from_doctags(doctags_doc) | |
yield f"**MD Output:**\n\n{doc.export_to_markdown()}" | |
return | |
else: | |
# -------- Text-Only Inference Branch -------- | |
if text == "": | |
gr.Error("Please input a query and optionally image(s).") | |
resulting_messages = [{ | |
"role": "user", | |
"content": [{"type": "text", "text": text}] | |
}] | |
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True) | |
inputs = processor(text=prompt, return_tensors="pt").to("cuda") | |
yield progress_bar_html("Processing text with SmolDocling") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False) | |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192) | |
thread = Thread(target=model.generate, kwargs=generation_args) | |
thread.start() | |
yield "..." | |
buffer = "" | |
full_output = "" | |
for new_text in streamer: | |
full_output += new_text | |
buffer += html.escape(new_text) | |
yield buffer | |
cleaned_output = full_output.replace("<end_of_utterance>", "").strip() | |
if cleaned_output: | |
yield cleaned_output | |
return | |
# --------------------------- | |
# Gradio Interface Setup | |
# --------------------------- | |
examples = [ | |
[{"text": "Convert this page to docling.", "files": ["example_images/2d0fbcc50e88065a040a537b717620e964fb4453314b71d83f3ed3425addcef6.png"]}], | |
[{"text": "Convert this table to OTSL.", "files": ["example_images/image-2.jpg"]}], | |
[{"text": "Convert code to text.", "files": ["example_images/7666.jpg"]}], | |
[{"text": "Convert formula to latex.", "files": ["example_images/2433.jpg"]}], | |
[{"text": "Convert chart to OTSL.", "files": ["example_images/06236926002285.png"]}], | |
[{"text": "OCR the text in location [47, 531, 167, 565]", "files": ["example_images/s2w_example.png"]}], | |
[{"text": "Extract all section header elements on the page.", "files": ["example_images/paper_3.png"]}], | |
[{"text": "Identify element at location [123, 413, 1059, 1061]", "files": ["example_images/redhat.png"]}], | |
[{"text": "Convert this page to docling.", "files": ["example_images/gazette_de_france.jpg"]}], | |
# Example video file (if available) | |
[{"text": "Describe the events in this video.", "files": ["example_videos/sample_video.mp4"]}], | |
] | |
demo = gr.ChatInterface( | |
fn=model_inference, | |
title="SmolDocling-256M: Ultra-compact VLM for Document Conversion 💫", | |
description=( | |
"Play with [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) in this demo. " | |
"Upload an image, video, and text query or try one of the examples. Each chat starts a new conversation." | |
), | |
examples=examples, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
cache_examples=False | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |