prithivMLmods commited on
Commit
17c204f
·
verified ·
1 Parent(s): 8f83a2b

Delete multisource_121.py

Browse files
Files changed (1) hide show
  1. multisource_121.py +0 -73
multisource_121.py DELETED
@@ -1,73 +0,0 @@
1
- import gradio as gr
2
- import spaces
3
- from transformers import AutoImageProcessor, SiglipForImageClassification
4
- from transformers.image_utils import load_image
5
- from PIL import Image
6
- import torch
7
-
8
- # Load model and processor
9
- model_name = "prithivMLmods/Multisource-121-DomainNet"
10
- model = SiglipForImageClassification.from_pretrained(model_name)
11
- processor = AutoImageProcessor.from_pretrained(model_name)
12
-
13
- @spaces.GPU
14
- def multisource_classification(image):
15
- """Predicts the domain category for an input image."""
16
- # Convert the input numpy array to a PIL Image and ensure it is in RGB format
17
- image = Image.fromarray(image).convert("RGB")
18
-
19
- # Process the image and convert it to model inputs
20
- inputs = processor(images=image, return_tensors="pt")
21
-
22
- # Get model predictions without gradient calculations
23
- with torch.no_grad():
24
- outputs = model(**inputs)
25
- logits = outputs.logits
26
- # Convert logits to probabilities using softmax
27
- probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
28
-
29
- # Mapping from class indices to domain labels
30
- labels = {
31
- "0": "barn", "1": "baseball_bat", "2": "basket", "3": "beach", "4": "bear",
32
- "5": "beard", "6": "bee", "7": "bird", "8": "blueberry", "9": "bowtie",
33
- "10": "bracelet", "11": "brain", "12": "bread", "13": "broccoli", "14": "bus",
34
- "15": "butterfly", "16": "circle", "17": "cloud", "18": "cruise_ship", "19": "dolphin",
35
- "20": "dumbbell", "21": "elephant", "22": "eye", "23": "eyeglasses", "24": "feather",
36
- "25": "fish", "26": "flower", "27": "foot", "28": "frog", "29": "giraffe",
37
- "30": "goatee", "31": "golf_club", "32": "grapes", "33": "grass", "34": "guitar",
38
- "35": "hamburger", "36": "hand", "37": "hat", "38": "headphones", "39": "helicopter",
39
- "40": "hexagon", "41": "hockey_stick", "42": "horse", "43": "hourglass", "44": "house",
40
- "45": "ice_cream", "46": "jacket", "47": "ladder", "48": "leg", "49": "lipstick",
41
- "50": "megaphone", "51": "monkey", "52": "moon", "53": "mushroom", "54": "necklace",
42
- "55": "owl", "56": "panda", "57": "pear", "58": "peas", "59": "penguin",
43
- "60": "pig", "61": "pillow", "62": "pineapple", "63": "pizza", "64": "pool",
44
- "65": "popsicle", "66": "rabbit", "67": "rhinoceros", "68": "rifle", "69": "river",
45
- "70": "sailboat", "71": "sandwich", "72": "sea_turtle", "73": "shark", "74": "shoe",
46
- "75": "skyscraper", "76": "snorkel", "77": "snowman", "78": "soccer_ball", "79": "speedboat",
47
- "80": "spider", "81": "spoon", "82": "square", "83": "squirrel", "84": "stethoscope",
48
- "85": "strawberry", "86": "streetlight", "87": "submarine", "88": "suitcase", "89": "sun",
49
- "90": "sweater", "91": "sword", "92": "table", "93": "teapot", "94": "teddy-bear",
50
- "95": "telephone", "96": "tent", "97": "The_Eiffel_Tower", "98": "The_Great_Wall_of_China",
51
- "99": "The_Mona_Lisa", "100": "tiger", "101": "toaster", "102": "tooth", "103": "tornado",
52
- "104": "tractor", "105": "train", "106": "tree", "107": "triangle", "108": "trombone",
53
- "109": "truck", "110": "trumpet", "111": "umbrella", "112": "vase", "113": "violin",
54
- "114": "watermelon", "115": "whale", "116": "windmill", "117": "wine_glass", "118": "yoga",
55
- "119": "zebra", "120": "zigzag"
56
- }
57
-
58
- # Create a dictionary mapping each label to its corresponding probability (rounded)
59
- predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
60
- return predictions
61
-
62
- # Create Gradio interface
63
- iface = gr.Interface(
64
- fn=multisource_classification,
65
- inputs=gr.Image(type="numpy"),
66
- outputs=gr.Label(label="Prediction Scores"),
67
- title="Multisource-121-DomainNet Classification",
68
- description="Upload an image to classify it into one of 121 domain categories."
69
- )
70
-
71
- # Launch the app
72
- if __name__ == "__main__":
73
- iface.launch()