Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,38 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
|
3 |
from threading import Thread
|
4 |
-
import re
|
5 |
import time
|
6 |
from PIL import Image
|
7 |
import torch
|
8 |
import spaces
|
|
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
11 |
-
model = AutoModelForVision2Seq.from_pretrained(
|
12 |
-
|
13 |
-
|
|
|
14 |
|
15 |
@spaces.GPU
|
16 |
def model_inference(
|
@@ -18,8 +40,62 @@ def model_inference(
|
|
18 |
repetition_penalty, top_p
|
19 |
):
|
20 |
text = input_dict["text"]
|
21 |
-
print(input_dict["files"])
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Process input images if provided.
|
24 |
if len(input_dict["files"]) > 1:
|
25 |
images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
|
@@ -28,13 +104,12 @@ def model_inference(
|
|
28 |
else:
|
29 |
images = []
|
30 |
|
31 |
-
# Validate input
|
32 |
if text == "" and not images:
|
33 |
gr.Error("Please input a query and optionally image(s).")
|
34 |
if text == "" and images:
|
35 |
gr.Error("Please input a text query along with the image(s).")
|
36 |
|
37 |
-
# Prepare prompt using the chat template.
|
38 |
resulting_messages = [{
|
39 |
"role": "user",
|
40 |
"content": [{"type": "image"} for _ in range(len(images))] + [
|
@@ -45,7 +120,6 @@ def model_inference(
|
|
45 |
inputs = processor(text=prompt, images=[images], return_tensors="pt")
|
46 |
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
47 |
|
48 |
-
# Setup generation parameters.
|
49 |
generation_args = {
|
50 |
"max_new_tokens": max_new_tokens,
|
51 |
"repetition_penalty": repetition_penalty,
|
@@ -60,26 +134,26 @@ def model_inference(
|
|
60 |
|
61 |
generation_args.update(inputs)
|
62 |
|
63 |
-
# Generate output with a streaming approach.
|
64 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
65 |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
66 |
-
|
67 |
-
|
68 |
thread = Thread(target=model.generate, kwargs=generation_args)
|
69 |
thread.start()
|
70 |
-
|
71 |
yield "..."
|
72 |
-
buffer = ""
|
73 |
for new_text in streamer:
|
74 |
buffer += new_text
|
75 |
time.sleep(0.01)
|
76 |
yield buffer
|
77 |
|
78 |
-
#
|
79 |
demo = gr.ChatInterface(
|
80 |
fn=model_inference,
|
81 |
description="# **SmolVLM Video Infer**",
|
82 |
-
textbox=gr.MultimodalTextbox(
|
|
|
|
|
|
|
|
|
83 |
stop_btn="Stop Generation",
|
84 |
multimodal=True,
|
85 |
additional_inputs=[
|
@@ -128,4 +202,4 @@ demo = gr.ChatInterface(
|
|
128 |
cache_examples=False
|
129 |
)
|
130 |
|
131 |
-
demo.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
|
3 |
from threading import Thread
|
|
|
4 |
import time
|
5 |
from PIL import Image
|
6 |
import torch
|
7 |
import spaces
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
|
11 |
+
# Helper: Downsample video to extract a fixed number of frames.
|
12 |
+
def downsample_video(video_path, num_frames=10):
|
13 |
+
cap = cv2.VideoCapture(video_path)
|
14 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
15 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
16 |
+
# Calculate evenly spaced frame indices.
|
17 |
+
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
|
18 |
+
frames = []
|
19 |
+
for idx in frame_indices:
|
20 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, idx)
|
21 |
+
ret, frame = cap.read()
|
22 |
+
if ret:
|
23 |
+
# Convert BGR to RGB and then to a PIL image.
|
24 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
25 |
+
frame = Image.fromarray(frame)
|
26 |
+
frames.append(frame)
|
27 |
+
cap.release()
|
28 |
+
return frames
|
29 |
+
|
30 |
+
# Load processor and model.
|
31 |
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
|
32 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
33 |
+
"HuggingFaceTB/SmolVLM-Instruct",
|
34 |
+
torch_dtype=torch.bfloat16,
|
35 |
+
).to("cuda")
|
36 |
|
37 |
@spaces.GPU
|
38 |
def model_inference(
|
|
|
40 |
repetition_penalty, top_p
|
41 |
):
|
42 |
text = input_dict["text"]
|
|
|
43 |
|
44 |
+
# --- Video Inference Branch ---
|
45 |
+
if text.lower().startswith("@video-infer"):
|
46 |
+
# Remove the command prefix to get the prompt.
|
47 |
+
prompt_text = text[len("@video-infer"):].strip()
|
48 |
+
if not input_dict["files"]:
|
49 |
+
yield "Error: Please provide a video file for @video-infer."
|
50 |
+
return
|
51 |
+
# Assume the first file is a video.
|
52 |
+
video_file = input_dict["files"][0]
|
53 |
+
frames = downsample_video(video_file)
|
54 |
+
if not frames:
|
55 |
+
yield "Error: Could not extract frames from the video."
|
56 |
+
return
|
57 |
+
# Build a chat content: include the user prompt and then each frame labeled.
|
58 |
+
content = [{"type": "text", "text": prompt_text}]
|
59 |
+
for idx, frame in enumerate(frames):
|
60 |
+
content.append({"type": "text", "text": f"Frame {idx+1}:"})
|
61 |
+
content.append({"type": "image", "image": frame})
|
62 |
+
resulting_messages = [{
|
63 |
+
"role": "user",
|
64 |
+
"content": content
|
65 |
+
}]
|
66 |
+
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
|
67 |
+
# Process the extracted frames as images.
|
68 |
+
inputs = processor(text=prompt, images=[frames], return_tensors="pt")
|
69 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
70 |
+
|
71 |
+
# Setup generation parameters.
|
72 |
+
generation_args = {
|
73 |
+
"max_new_tokens": max_new_tokens,
|
74 |
+
"repetition_penalty": repetition_penalty,
|
75 |
+
}
|
76 |
+
assert decoding_strategy in ["Greedy", "Top P Sampling"]
|
77 |
+
if decoding_strategy == "Greedy":
|
78 |
+
generation_args["do_sample"] = False
|
79 |
+
elif decoding_strategy == "Top P Sampling":
|
80 |
+
generation_args["temperature"] = temperature
|
81 |
+
generation_args["do_sample"] = True
|
82 |
+
generation_args["top_p"] = top_p
|
83 |
+
|
84 |
+
generation_args.update(inputs)
|
85 |
+
|
86 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
87 |
+
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
88 |
+
buffer = ""
|
89 |
+
thread = Thread(target=model.generate, kwargs=generation_args)
|
90 |
+
thread.start()
|
91 |
+
yield "..."
|
92 |
+
for new_text in streamer:
|
93 |
+
buffer += new_text
|
94 |
+
time.sleep(0.01)
|
95 |
+
yield buffer
|
96 |
+
return
|
97 |
+
|
98 |
+
# --- Default Image Inference Branch ---
|
99 |
# Process input images if provided.
|
100 |
if len(input_dict["files"]) > 1:
|
101 |
images = [Image.open(image).convert("RGB") for image in input_dict["files"]]
|
|
|
104 |
else:
|
105 |
images = []
|
106 |
|
107 |
+
# Validate input.
|
108 |
if text == "" and not images:
|
109 |
gr.Error("Please input a query and optionally image(s).")
|
110 |
if text == "" and images:
|
111 |
gr.Error("Please input a text query along with the image(s).")
|
112 |
|
|
|
113 |
resulting_messages = [{
|
114 |
"role": "user",
|
115 |
"content": [{"type": "image"} for _ in range(len(images))] + [
|
|
|
120 |
inputs = processor(text=prompt, images=[images], return_tensors="pt")
|
121 |
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
122 |
|
|
|
123 |
generation_args = {
|
124 |
"max_new_tokens": max_new_tokens,
|
125 |
"repetition_penalty": repetition_penalty,
|
|
|
134 |
|
135 |
generation_args.update(inputs)
|
136 |
|
|
|
137 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
138 |
generation_args = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
139 |
+
buffer = ""
|
|
|
140 |
thread = Thread(target=model.generate, kwargs=generation_args)
|
141 |
thread.start()
|
|
|
142 |
yield "..."
|
|
|
143 |
for new_text in streamer:
|
144 |
buffer += new_text
|
145 |
time.sleep(0.01)
|
146 |
yield buffer
|
147 |
|
148 |
+
# Gradio ChatInterface: Allow both image and video file types.
|
149 |
demo = gr.ChatInterface(
|
150 |
fn=model_inference,
|
151 |
description="# **SmolVLM Video Infer**",
|
152 |
+
textbox=gr.MultimodalTextbox(
|
153 |
+
label="Query Input",
|
154 |
+
file_types=["image", "video"],
|
155 |
+
file_count="multiple"
|
156 |
+
),
|
157 |
stop_btn="Stop Generation",
|
158 |
multimodal=True,
|
159 |
additional_inputs=[
|
|
|
202 |
cache_examples=False
|
203 |
)
|
204 |
|
205 |
+
demo.launch(debug=True)
|