Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,7 +11,6 @@ import spaces
|
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
-
import edge_tts
|
15 |
import cv2
|
16 |
|
17 |
from transformers import (
|
@@ -24,61 +23,92 @@ from transformers import (
|
|
24 |
from transformers.image_utils import load_image
|
25 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
|
|
|
|
|
|
|
31 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
32 |
|
33 |
-
#
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
device_map="auto",
|
39 |
torch_dtype=torch.bfloat16,
|
40 |
)
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
50 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
51 |
-
|
52 |
trust_remote_code=True,
|
53 |
torch_dtype=torch.float16
|
54 |
).to("cuda").eval()
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
#
|
74 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
76 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
77 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
78 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
79 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
80 |
|
81 |
-
# Load the SDXL pipeline
|
82 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
83 |
MODEL_ID_SD,
|
84 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
@@ -87,22 +117,19 @@ sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
87 |
).to(device)
|
88 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
89 |
|
90 |
-
# Ensure that the text encoder is in half-precision if using CUDA.
|
91 |
if torch.cuda.is_available():
|
92 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
93 |
-
|
94 |
-
# Optional: compile the model for speedup if enabled
|
95 |
if USE_TORCH_COMPILE:
|
96 |
sd_pipe.compile()
|
97 |
-
|
98 |
-
# Optional: offload parts of the model to CPU if needed
|
99 |
if ENABLE_CPU_OFFLOAD:
|
100 |
sd_pipe.enable_model_cpu_offload()
|
101 |
|
102 |
MAX_SEED = np.iinfo(np.int32).max
|
103 |
|
|
|
|
|
|
|
104 |
def save_image(img: Image.Image) -> str:
|
105 |
-
"""Save a PIL image with a unique filename and return the path."""
|
106 |
unique_name = str(uuid.uuid4()) + ".png"
|
107 |
img.save(unique_name)
|
108 |
return unique_name
|
@@ -113,10 +140,6 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
113 |
return seed
|
114 |
|
115 |
def progress_bar_html(label: str) -> str:
|
116 |
-
"""
|
117 |
-
Returns an HTML snippet for a thin progress bar with a label.
|
118 |
-
The progress bar is styled as a dark red animated bar.
|
119 |
-
"""
|
120 |
return f'''
|
121 |
<div style="display: flex; align-items: center;">
|
122 |
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
@@ -133,27 +156,29 @@ def progress_bar_html(label: str) -> str:
|
|
133 |
'''
|
134 |
|
135 |
def downsample_video(video_path):
|
136 |
-
"""
|
137 |
-
Downsamples the video to 10 evenly spaced frames.
|
138 |
-
Each frame is returned as a PIL image along with its timestamp.
|
139 |
-
"""
|
140 |
vidcap = cv2.VideoCapture(video_path)
|
141 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
142 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
143 |
frames = []
|
144 |
-
# Sample 10 evenly spaced frames.
|
145 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
146 |
for i in frame_indices:
|
147 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
148 |
success, image = vidcap.read()
|
149 |
if success:
|
150 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
151 |
pil_image = Image.fromarray(image)
|
152 |
timestamp = round(i / fps, 2)
|
153 |
frames.append((pil_image, timestamp))
|
154 |
vidcap.release()
|
155 |
return frames
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
@spaces.GPU(duration=60, enable_queue=True)
|
158 |
def generate_image_fn(
|
159 |
prompt: str,
|
@@ -169,10 +194,8 @@ def generate_image_fn(
|
|
169 |
num_images: int = 1,
|
170 |
progress=gr.Progress(track_tqdm=True),
|
171 |
):
|
172 |
-
"""Generate images using the SDXL pipeline."""
|
173 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
174 |
generator = torch.Generator(device=device).manual_seed(seed)
|
175 |
-
|
176 |
options = {
|
177 |
"prompt": [prompt] * num_images,
|
178 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
@@ -185,15 +208,12 @@ def generate_image_fn(
|
|
185 |
}
|
186 |
if use_resolution_binning:
|
187 |
options["use_resolution_binning"] = True
|
188 |
-
|
189 |
images = []
|
190 |
-
# Process in batches
|
191 |
for i in range(0, num_images, BATCH_SIZE):
|
192 |
batch_options = options.copy()
|
193 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
194 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
195 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
196 |
-
# Wrap the pipeline call in autocast if using CUDA
|
197 |
if device.type == "cuda":
|
198 |
with torch.autocast("cuda", dtype=torch.float16):
|
199 |
outputs = sd_pipe(**batch_options)
|
@@ -203,6 +223,93 @@ def generate_image_fn(
|
|
203 |
image_paths = [save_image(img) for img in images]
|
204 |
return image_paths, seed
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
@spaces.GPU
|
207 |
def generate(
|
208 |
input_dict: dict,
|
@@ -214,11 +321,14 @@ def generate(
|
|
214 |
repetition_penalty: float = 1.2,
|
215 |
):
|
216 |
"""
|
217 |
-
Generates chatbot responses with support for multimodal input,
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
- "@
|
|
|
|
|
|
|
222 |
"""
|
223 |
text = input_dict["text"]
|
224 |
files = input_dict.get("files", [])
|
@@ -226,7 +336,6 @@ def generate(
|
|
226 |
|
227 |
# Branch for image generation.
|
228 |
if lower_text.startswith("@image"):
|
229 |
-
# Remove the "@image" tag and use the rest as prompt
|
230 |
prompt = text[len("@image"):].strip()
|
231 |
yield progress_bar_html("Generating Image")
|
232 |
image_paths, used_seed = generate_image_fn(
|
@@ -245,18 +354,16 @@ def generate(
|
|
245 |
yield gr.Image(image_paths[0])
|
246 |
return
|
247 |
|
248 |
-
#
|
249 |
if lower_text.startswith("@video-infer"):
|
250 |
prompt = text[len("@video-infer"):].strip()
|
251 |
if files:
|
252 |
-
# Assume the first file is a video.
|
253 |
video_path = files[0]
|
254 |
frames = downsample_video(video_path)
|
255 |
messages = [
|
256 |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
257 |
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
258 |
]
|
259 |
-
# Append each frame with its timestamp.
|
260 |
for frame in frames:
|
261 |
image, timestamp = frame
|
262 |
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
@@ -287,27 +394,59 @@ def generate(
|
|
287 |
buffer = ""
|
288 |
yield progress_bar_html("Processing video with Qwen2VL")
|
289 |
for new_text in streamer:
|
290 |
-
buffer += new_text
|
291 |
-
buffer = buffer.replace("<|im_end|>", "")
|
292 |
time.sleep(0.01)
|
293 |
yield buffer
|
294 |
return
|
295 |
|
296 |
-
#
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
310 |
|
|
|
|
|
|
|
311 |
if files:
|
312 |
if len(files) > 1:
|
313 |
images = [load_image(image) for image in files]
|
@@ -331,17 +470,16 @@ def generate(
|
|
331 |
buffer = ""
|
332 |
yield progress_bar_html("Processing Qwen2VL")
|
333 |
for new_text in streamer:
|
334 |
-
buffer += new_text
|
335 |
-
buffer = buffer.replace("<|im_end|>", "")
|
336 |
time.sleep(0.01)
|
337 |
yield buffer
|
338 |
else:
|
339 |
-
input_ids =
|
340 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
341 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
342 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
343 |
-
input_ids = input_ids.to(
|
344 |
-
streamer = TextIteratorStreamer(
|
345 |
generation_kwargs = {
|
346 |
"input_ids": input_ids,
|
347 |
"streamer": streamer,
|
@@ -353,19 +491,19 @@ def generate(
|
|
353 |
"num_beams": 1,
|
354 |
"repetition_penalty": repetition_penalty,
|
355 |
}
|
356 |
-
t = Thread(target=
|
357 |
t.start()
|
358 |
outputs = []
|
359 |
-
yield progress_bar_html("Processing with
|
360 |
for new_text in streamer:
|
361 |
outputs.append(new_text)
|
362 |
yield "".join(outputs)
|
363 |
final_response = "".join(outputs)
|
364 |
yield final_response
|
365 |
-
if is_tts and voice:
|
366 |
-
output_file = asyncio.run(text_to_speech(final_response, voice))
|
367 |
-
yield gr.Audio(output_file, autoplay=True)
|
368 |
|
|
|
|
|
|
|
369 |
demo = gr.ChatInterface(
|
370 |
fn=generate,
|
371 |
additional_inputs=[
|
@@ -381,16 +519,17 @@ demo = gr.ChatInterface(
|
|
381 |
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
|
382 |
["@image Chocolate dripping from a donut"],
|
383 |
["Python Program for Array Rotation"],
|
384 |
-
["@
|
|
|
385 |
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
386 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
387 |
-
["@
|
388 |
],
|
389 |
cache_examples=False,
|
390 |
type="messages",
|
391 |
-
description="# **
|
392 |
fill_height=True,
|
393 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="
|
394 |
stop_btn="Stop Generation",
|
395 |
multimodal=True,
|
396 |
)
|
|
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
|
|
14 |
import cv2
|
15 |
|
16 |
from transformers import (
|
|
|
23 |
from transformers.image_utils import load_image
|
24 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
25 |
|
26 |
+
# Additional imports for new TTS
|
27 |
+
from snac import SNAC
|
28 |
+
from huggingface_hub import snapshot_download
|
29 |
+
from dotenv import load_dotenv
|
30 |
+
load_dotenv()
|
31 |
|
32 |
+
# ---------------------------
|
33 |
+
# Set up device
|
34 |
+
# ---------------------------
|
35 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
36 |
+
tts_device = "cuda" if torch.cuda.is_available() else "cpu" # for SNAC and Orpheus TTS
|
37 |
|
38 |
+
# ---------------------------
|
39 |
+
# Load DeepHermes Llama (chat/LLM) model
|
40 |
+
# ---------------------------
|
41 |
+
hermes_model_id = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
|
42 |
+
hermes_llm_tokenizer = AutoTokenizer.from_pretrained(hermes_model_id)
|
43 |
+
hermes_llm_model = AutoModelForCausalLM.from_pretrained(
|
44 |
+
hermes_model_id,
|
45 |
device_map="auto",
|
46 |
torch_dtype=torch.bfloat16,
|
47 |
)
|
48 |
+
hermes_llm_model.eval()
|
49 |
|
50 |
+
# ---------------------------
|
51 |
+
# Load Qwen2-VL processor and model for multimodal tasks
|
52 |
+
# ---------------------------
|
53 |
+
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
54 |
+
# (If needed, you can pass extra arguments such as a size dict here if required.)
|
55 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
|
|
|
56 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
57 |
+
MODEL_ID_QWEN,
|
58 |
trust_remote_code=True,
|
59 |
torch_dtype=torch.float16
|
60 |
).to("cuda").eval()
|
61 |
|
62 |
+
# ---------------------------
|
63 |
+
# Load Orpheus TTS model and SNAC for TTS synthesis
|
64 |
+
# ---------------------------
|
65 |
+
print("Loading SNAC model...")
|
66 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
67 |
+
snac_model = snac_model.to(tts_device)
|
68 |
|
69 |
+
tts_model_name = "canopylabs/orpheus-3b-0.1-ft"
|
70 |
+
# Download only model config and safetensors
|
71 |
+
snapshot_download(
|
72 |
+
repo_id=tts_model_name,
|
73 |
+
allow_patterns=[
|
74 |
+
"config.json",
|
75 |
+
"*.safetensors",
|
76 |
+
"model.safetensors.index.json",
|
77 |
+
],
|
78 |
+
ignore_patterns=[
|
79 |
+
"optimizer.pt",
|
80 |
+
"pytorch_model.bin",
|
81 |
+
"training_args.bin",
|
82 |
+
"scheduler.pt",
|
83 |
+
"tokenizer.json",
|
84 |
+
"tokenizer_config.json",
|
85 |
+
"special_tokens_map.json",
|
86 |
+
"vocab.json",
|
87 |
+
"merges.txt",
|
88 |
+
"tokenizer.*"
|
89 |
+
]
|
90 |
+
)
|
91 |
+
orpheus_tts_model = AutoModelForCausalLM.from_pretrained(tts_model_name, torch_dtype=torch.bfloat16)
|
92 |
+
orpheus_tts_model.to(tts_device)
|
93 |
+
orpheus_tts_tokenizer = AutoTokenizer.from_pretrained(tts_model_name)
|
94 |
+
print(f"Orpheus TTS model loaded to {tts_device}")
|
95 |
|
96 |
+
# ---------------------------
|
97 |
+
# Some global parameters for chat and image generation
|
98 |
+
# ---------------------------
|
99 |
+
MAX_MAX_NEW_TOKENS = 2048
|
100 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
101 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
102 |
+
|
103 |
+
# ---------------------------
|
104 |
+
# Stable Diffusion XL setup
|
105 |
+
# ---------------------------
|
106 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
107 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
108 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
109 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
110 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
111 |
|
|
|
112 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
113 |
MODEL_ID_SD,
|
114 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
|
117 |
).to(device)
|
118 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
119 |
|
|
|
120 |
if torch.cuda.is_available():
|
121 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
|
|
|
|
122 |
if USE_TORCH_COMPILE:
|
123 |
sd_pipe.compile()
|
|
|
|
|
124 |
if ENABLE_CPU_OFFLOAD:
|
125 |
sd_pipe.enable_model_cpu_offload()
|
126 |
|
127 |
MAX_SEED = np.iinfo(np.int32).max
|
128 |
|
129 |
+
# ---------------------------
|
130 |
+
# Utility functions
|
131 |
+
# ---------------------------
|
132 |
def save_image(img: Image.Image) -> str:
|
|
|
133 |
unique_name = str(uuid.uuid4()) + ".png"
|
134 |
img.save(unique_name)
|
135 |
return unique_name
|
|
|
140 |
return seed
|
141 |
|
142 |
def progress_bar_html(label: str) -> str:
|
|
|
|
|
|
|
|
|
143 |
return f'''
|
144 |
<div style="display: flex; align-items: center;">
|
145 |
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
|
|
156 |
'''
|
157 |
|
158 |
def downsample_video(video_path):
|
|
|
|
|
|
|
|
|
159 |
vidcap = cv2.VideoCapture(video_path)
|
160 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
161 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
162 |
frames = []
|
|
|
163 |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
164 |
for i in frame_indices:
|
165 |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
166 |
success, image = vidcap.read()
|
167 |
if success:
|
168 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
169 |
pil_image = Image.fromarray(image)
|
170 |
timestamp = round(i / fps, 2)
|
171 |
frames.append((pil_image, timestamp))
|
172 |
vidcap.release()
|
173 |
return frames
|
174 |
|
175 |
+
def clean_chat_history(chat_history):
|
176 |
+
cleaned = []
|
177 |
+
for msg in chat_history:
|
178 |
+
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
179 |
+
cleaned.append(msg)
|
180 |
+
return cleaned
|
181 |
+
|
182 |
@spaces.GPU(duration=60, enable_queue=True)
|
183 |
def generate_image_fn(
|
184 |
prompt: str,
|
|
|
194 |
num_images: int = 1,
|
195 |
progress=gr.Progress(track_tqdm=True),
|
196 |
):
|
|
|
197 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
198 |
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
199 |
options = {
|
200 |
"prompt": [prompt] * num_images,
|
201 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
208 |
}
|
209 |
if use_resolution_binning:
|
210 |
options["use_resolution_binning"] = True
|
|
|
211 |
images = []
|
|
|
212 |
for i in range(0, num_images, BATCH_SIZE):
|
213 |
batch_options = options.copy()
|
214 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
215 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
216 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
|
|
217 |
if device.type == "cuda":
|
218 |
with torch.autocast("cuda", dtype=torch.float16):
|
219 |
outputs = sd_pipe(**batch_options)
|
|
|
223 |
image_paths = [save_image(img) for img in images]
|
224 |
return image_paths, seed
|
225 |
|
226 |
+
# ---------------------------
|
227 |
+
# New TTS functions (SNAC/Orpheus pipeline)
|
228 |
+
# ---------------------------
|
229 |
+
def process_prompt(prompt, voice, tokenizer, device):
|
230 |
+
prompt = f"{voice}: {prompt}"
|
231 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
232 |
+
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
233 |
+
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End markers
|
234 |
+
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
235 |
+
attention_mask = torch.ones_like(modified_input_ids)
|
236 |
+
return modified_input_ids.to(device), attention_mask.to(device)
|
237 |
+
|
238 |
+
def parse_output(generated_ids):
|
239 |
+
token_to_find = 128257
|
240 |
+
token_to_remove = 128258
|
241 |
+
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
242 |
+
if len(token_indices[1]) > 0:
|
243 |
+
last_occurrence_idx = token_indices[1][-1].item()
|
244 |
+
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
245 |
+
else:
|
246 |
+
cropped_tensor = generated_ids
|
247 |
+
processed_rows = []
|
248 |
+
for row in cropped_tensor:
|
249 |
+
masked_row = row[row != token_to_remove]
|
250 |
+
processed_rows.append(masked_row)
|
251 |
+
code_lists = []
|
252 |
+
for row in processed_rows:
|
253 |
+
row_length = row.size(0)
|
254 |
+
new_length = (row_length // 7) * 7
|
255 |
+
trimmed_row = row[:new_length]
|
256 |
+
trimmed_row = [t - 128266 for t in trimmed_row]
|
257 |
+
code_lists.append(trimmed_row)
|
258 |
+
return code_lists[0]
|
259 |
+
|
260 |
+
def redistribute_codes(code_list, snac_model):
|
261 |
+
device = next(snac_model.parameters()).device
|
262 |
+
layer_1 = []
|
263 |
+
layer_2 = []
|
264 |
+
layer_3 = []
|
265 |
+
for i in range((len(code_list)+1)//7):
|
266 |
+
layer_1.append(code_list[7*i])
|
267 |
+
layer_2.append(code_list[7*i+1]-4096)
|
268 |
+
layer_3.append(code_list[7*i+2]-(2*4096))
|
269 |
+
layer_3.append(code_list[7*i+3]-(3*4096))
|
270 |
+
layer_2.append(code_list[7*i+4]-(4*4096))
|
271 |
+
layer_3.append(code_list[7*i+5]-(5*4096))
|
272 |
+
layer_3.append(code_list[7*i+6]-(6*4096))
|
273 |
+
codes = [
|
274 |
+
torch.tensor(layer_1, device=device).unsqueeze(0),
|
275 |
+
torch.tensor(layer_2, device=device).unsqueeze(0),
|
276 |
+
torch.tensor(layer_3, device=device).unsqueeze(0)
|
277 |
+
]
|
278 |
+
audio_hat = snac_model.decode(codes)
|
279 |
+
return audio_hat.detach().squeeze().cpu().numpy()
|
280 |
+
|
281 |
+
@spaces.GPU()
|
282 |
+
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
283 |
+
if not text.strip():
|
284 |
+
return None
|
285 |
+
try:
|
286 |
+
progress(0.1, "Processing text...")
|
287 |
+
input_ids, attention_mask = process_prompt(text, voice, orpheus_tts_tokenizer, tts_device)
|
288 |
+
progress(0.3, "Generating speech tokens...")
|
289 |
+
with torch.no_grad():
|
290 |
+
generated_ids = orpheus_tts_model.generate(
|
291 |
+
input_ids=input_ids,
|
292 |
+
attention_mask=attention_mask,
|
293 |
+
max_new_tokens=max_new_tokens,
|
294 |
+
do_sample=True,
|
295 |
+
temperature=temperature,
|
296 |
+
top_p=top_p,
|
297 |
+
repetition_penalty=repetition_penalty,
|
298 |
+
num_return_sequences=1,
|
299 |
+
eos_token_id=128258,
|
300 |
+
)
|
301 |
+
progress(0.6, "Processing speech tokens...")
|
302 |
+
code_list = parse_output(generated_ids)
|
303 |
+
progress(0.8, "Converting to audio...")
|
304 |
+
audio_samples = redistribute_codes(code_list, snac_model)
|
305 |
+
return (24000, audio_samples)
|
306 |
+
except Exception as e:
|
307 |
+
print(f"Error generating speech: {e}")
|
308 |
+
return None
|
309 |
+
|
310 |
+
# ---------------------------
|
311 |
+
# Main generate function for the chat interface
|
312 |
+
# ---------------------------
|
313 |
@spaces.GPU
|
314 |
def generate(
|
315 |
input_dict: dict,
|
|
|
321 |
repetition_penalty: float = 1.2,
|
322 |
):
|
323 |
"""
|
324 |
+
Generates chatbot responses with support for multimodal input, image generation,
|
325 |
+
TTS, and LLM-augmented TTS.
|
326 |
+
|
327 |
+
Trigger commands:
|
328 |
+
- "@image": generate an image.
|
329 |
+
- "@video-infer": process video.
|
330 |
+
- "@<voice>-tts": directly convert text to speech.
|
331 |
+
- "@<voice>-llm": infer with the DeepHermes Llama model then convert to speech.
|
332 |
"""
|
333 |
text = input_dict["text"]
|
334 |
files = input_dict.get("files", [])
|
|
|
336 |
|
337 |
# Branch for image generation.
|
338 |
if lower_text.startswith("@image"):
|
|
|
339 |
prompt = text[len("@image"):].strip()
|
340 |
yield progress_bar_html("Generating Image")
|
341 |
image_paths, used_seed = generate_image_fn(
|
|
|
354 |
yield gr.Image(image_paths[0])
|
355 |
return
|
356 |
|
357 |
+
# Branch for video processing.
|
358 |
if lower_text.startswith("@video-infer"):
|
359 |
prompt = text[len("@video-infer"):].strip()
|
360 |
if files:
|
|
|
361 |
video_path = files[0]
|
362 |
frames = downsample_video(video_path)
|
363 |
messages = [
|
364 |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
365 |
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
366 |
]
|
|
|
367 |
for frame in frames:
|
368 |
image, timestamp = frame
|
369 |
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
|
|
394 |
buffer = ""
|
395 |
yield progress_bar_html("Processing video with Qwen2VL")
|
396 |
for new_text in streamer:
|
397 |
+
buffer += new_text.replace("<|im_end|>", "")
|
|
|
398 |
time.sleep(0.01)
|
399 |
yield buffer
|
400 |
return
|
401 |
|
402 |
+
# Define TTS and LLM tag mappings.
|
403 |
+
tts_tags = {"@tara-tts": "tara", "@dan-tts": "dan", "@josh-tts": "josh", "@emma-tts": "emma"}
|
404 |
+
llm_tags = {"@tara-llm": "tara", "@dan-llm": "dan", "@josh-llm": "josh", "@emma-llm": "emma"}
|
405 |
+
|
406 |
+
# Branch for direct TTS (no LLM inference).
|
407 |
+
for tag, voice in tts_tags.items():
|
408 |
+
if lower_text.startswith(tag):
|
409 |
+
text = text[len(tag):].strip()
|
410 |
+
# Directly generate speech from the provided text.
|
411 |
+
audio_output = generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens)
|
412 |
+
yield gr.Audio(audio_output, autoplay=True)
|
413 |
+
return
|
414 |
+
|
415 |
+
# Branch for LLM-augmented TTS.
|
416 |
+
for tag, voice in llm_tags.items():
|
417 |
+
if lower_text.startswith(tag):
|
418 |
+
text = text[len(tag):].strip()
|
419 |
+
conversation = [{"role": "user", "content": text}]
|
420 |
+
input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
421 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
422 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
423 |
+
input_ids = input_ids.to(hermes_llm_model.device)
|
424 |
+
streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
425 |
+
generation_kwargs = {
|
426 |
+
"input_ids": input_ids,
|
427 |
+
"streamer": streamer,
|
428 |
+
"max_new_tokens": max_new_tokens,
|
429 |
+
"do_sample": True,
|
430 |
+
"top_p": top_p,
|
431 |
+
"top_k": 50,
|
432 |
+
"temperature": temperature,
|
433 |
+
"num_beams": 1,
|
434 |
+
"repetition_penalty": repetition_penalty,
|
435 |
+
}
|
436 |
+
t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs)
|
437 |
+
t.start()
|
438 |
+
outputs = []
|
439 |
+
for new_text in streamer:
|
440 |
+
outputs.append(new_text)
|
441 |
+
final_response = "".join(outputs)
|
442 |
+
# Convert LLM response to speech.
|
443 |
+
audio_output = generate_speech(final_response, voice, temperature, top_p, repetition_penalty, max_new_tokens)
|
444 |
+
yield gr.Audio(audio_output, autoplay=True)
|
445 |
+
return
|
446 |
|
447 |
+
# Default branch for regular chat (text and multimodal without TTS).
|
448 |
+
conversation = clean_chat_history(chat_history)
|
449 |
+
conversation.append({"role": "user", "content": text})
|
450 |
if files:
|
451 |
if len(files) > 1:
|
452 |
images = [load_image(image) for image in files]
|
|
|
470 |
buffer = ""
|
471 |
yield progress_bar_html("Processing Qwen2VL")
|
472 |
for new_text in streamer:
|
473 |
+
buffer += new_text.replace("<|im_end|>", "")
|
|
|
474 |
time.sleep(0.01)
|
475 |
yield buffer
|
476 |
else:
|
477 |
+
input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
478 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
479 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
480 |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
481 |
+
input_ids = input_ids.to(hermes_llm_model.device)
|
482 |
+
streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
483 |
generation_kwargs = {
|
484 |
"input_ids": input_ids,
|
485 |
"streamer": streamer,
|
|
|
491 |
"num_beams": 1,
|
492 |
"repetition_penalty": repetition_penalty,
|
493 |
}
|
494 |
+
t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs)
|
495 |
t.start()
|
496 |
outputs = []
|
497 |
+
yield progress_bar_html("Processing with DeepHermes LLM")
|
498 |
for new_text in streamer:
|
499 |
outputs.append(new_text)
|
500 |
yield "".join(outputs)
|
501 |
final_response = "".join(outputs)
|
502 |
yield final_response
|
|
|
|
|
|
|
503 |
|
504 |
+
# ---------------------------
|
505 |
+
# Gradio Interface
|
506 |
+
# ---------------------------
|
507 |
demo = gr.ChatInterface(
|
508 |
fn=generate,
|
509 |
additional_inputs=[
|
|
|
519 |
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
|
520 |
["@image Chocolate dripping from a donut"],
|
521 |
["Python Program for Array Rotation"],
|
522 |
+
["@tara-tts Who is Nikola Tesla, and why did he die?"],
|
523 |
+
["@emma-llm Explain the causes of rainbows"],
|
524 |
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
525 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
526 |
+
["@josh-tts What causes rainbows to form?"],
|
527 |
],
|
528 |
cache_examples=False,
|
529 |
type="messages",
|
530 |
+
description="# **Llama Edge** \n`Use @video-infer, @image, @<voice>-tts, or @<voice>-llm triggers`",
|
531 |
fill_height=True,
|
532 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder=" Use @tara-tts/@dan-tts for direct TTS or @tara-llm/@dan-llm for LLM+TTS, etc."),
|
533 |
stop_btn="Stop Generation",
|
534 |
multimodal=True,
|
535 |
)
|