Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,33 +1,31 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
os.environ["VLLM_ENABLE_CHUNKED_PREFILL"] = "False"
|
4 |
-
os.environ["VLLM_ENABLE_ASYNC_OUTPUT"] = "False"
|
5 |
-
|
6 |
-
import re
|
7 |
import uuid
|
8 |
import json
|
9 |
import time
|
10 |
-
import
|
11 |
-
import asyncio
|
12 |
-
import cv2
|
13 |
-
from datetime import datetime, timedelta
|
14 |
from threading import Thread
|
|
|
15 |
|
16 |
-
import torch
|
17 |
import gradio as gr
|
18 |
-
import
|
19 |
import numpy as np
|
20 |
from PIL import Image
|
|
|
|
|
21 |
from huggingface_hub import hf_hub_download
|
22 |
-
from vllm import LLM
|
23 |
-
from vllm.sampling_params import SamplingParams
|
24 |
|
25 |
# -----------------------------------------------------------------------------
|
26 |
-
#
|
27 |
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
29 |
def progress_bar_html(label: str) -> str:
|
30 |
-
"""Return an HTML snippet for a progress bar."""
|
31 |
return f'''
|
32 |
<div style="display: flex; align-items: center;">
|
33 |
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
@@ -43,186 +41,163 @@ def progress_bar_html(label: str) -> str:
|
|
43 |
</style>
|
44 |
'''
|
45 |
|
46 |
-
def
|
|
|
|
|
|
|
47 |
"""
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
"""
|
51 |
vidcap = cv2.VideoCapture(video_path)
|
52 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
53 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
54 |
frames = []
|
55 |
-
if total_frames
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
66 |
-
pil_image = Image.fromarray(image)
|
67 |
-
timestamp = round(i / fps, 2)
|
68 |
-
frames.append((pil_image, timestamp))
|
69 |
vidcap.release()
|
70 |
return frames
|
71 |
|
72 |
-
def
|
73 |
"""
|
74 |
-
|
75 |
-
|
|
|
76 |
"""
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
# -----------------------------------------------------------------------------
|
86 |
-
#
|
87 |
# -----------------------------------------------------------------------------
|
88 |
-
|
89 |
-
# Model details (adjust as needed)
|
90 |
MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
91 |
-
# Load the system prompt from HF Hub (ensure SYSTEM_PROMPT.txt exists in the repo)
|
92 |
SYSTEM_PROMPT = load_system_prompt(MODEL_ID, "SYSTEM_PROMPT.txt")
|
93 |
-
# Alternatively, you can hardcode the system prompt:
|
94 |
-
# SYSTEM_PROMPT = "You are a conversational agent that always answers straight to the point, and ends with an ASCII cat."
|
95 |
-
|
96 |
-
# Set the device explicitly.
|
97 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
# -----------------------------------------------------------------------------
|
104 |
# Main Generation Function
|
105 |
# -----------------------------------------------------------------------------
|
106 |
-
@spaces.GPU
|
107 |
def generate(
|
108 |
input_dict: dict,
|
109 |
chat_history: list,
|
110 |
-
max_new_tokens: int =
|
111 |
-
temperature: float = 0.
|
112 |
top_p: float = 0.9,
|
113 |
top_k: int = 50,
|
|
|
114 |
):
|
115 |
-
"""
|
116 |
-
The main generation function for the Mistral chatbot.
|
117 |
-
It supports:
|
118 |
-
- Text-only inference.
|
119 |
-
- Image inference (attaches image file paths).
|
120 |
-
- Video inference (extracts and attaches sampled video frames).
|
121 |
-
"""
|
122 |
-
text = input_dict["text"]
|
123 |
files = input_dict.get("files", [])
|
124 |
-
# Prepare the conversation with a system prompt.
|
125 |
-
messages = [
|
126 |
-
{"role": "system", "content": SYSTEM_PROMPT}
|
127 |
-
]
|
128 |
|
129 |
-
#
|
130 |
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
|
131 |
-
if
|
132 |
-
|
133 |
-
if any(str(f).lower().endswith(video_extensions) for f in files):
|
134 |
-
# Remove any @video-infer tag if present.
|
135 |
-
prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"')
|
136 |
-
video_path = files[0] # currently process the first video file
|
137 |
-
frames = downsample_video(video_path)
|
138 |
-
# Build a list that contains the prompt plus each frame information.
|
139 |
-
user_content = [{"type": "text", "text": prompt_clean}]
|
140 |
-
for frame in frames:
|
141 |
-
image, timestamp = frame
|
142 |
-
# Save the frame to a temporary file.
|
143 |
-
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
144 |
-
image.save(image_path)
|
145 |
-
user_content.append({"type": "text", "text": f"Frame at {timestamp} seconds:"})
|
146 |
-
user_content.append({"type": "image_path", "image_path": image_path})
|
147 |
-
messages.append({"role": "user", "content": user_content})
|
148 |
-
else:
|
149 |
-
# Assume provided files are images.
|
150 |
-
prompt_clean = re.sub(r"@mistral", "", text, flags=re.IGNORECASE).strip().strip('"')
|
151 |
-
user_content = [{"type": "text", "text": prompt_clean}]
|
152 |
-
for file in files:
|
153 |
-
try:
|
154 |
-
image = Image.open(file)
|
155 |
-
image_path = f"image_{uuid.uuid4().hex}.png"
|
156 |
-
image.save(image_path)
|
157 |
-
user_content.append({"type": "image_path", "image_path": image_path})
|
158 |
-
except Exception as e:
|
159 |
-
user_content.append({"type": "text", "text": f"Could not open file {file}"})
|
160 |
-
messages.append({"role": "user", "content": user_content})
|
161 |
-
else:
|
162 |
-
# Text-only branch.
|
163 |
-
messages.append({"role": "user", "content": [{"type": "text", "text": text}]})
|
164 |
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
|
168 |
-
# Set up sampling parameters.
|
169 |
-
sampling_params = SamplingParams(
|
170 |
-
max_tokens=max_new_tokens,
|
171 |
-
temperature=temperature,
|
172 |
-
top_p=top_p,
|
173 |
-
top_k=top_k
|
174 |
-
)
|
175 |
-
# Run the chat (synchronously) using vllm.
|
176 |
-
outputs = llm.chat(messages, sampling_params=sampling_params)
|
177 |
-
final_response = outputs[0].outputs[0].text
|
178 |
-
|
179 |
-
# Simulate streaming output by chunking the result.
|
180 |
buffer = ""
|
181 |
-
|
182 |
-
for
|
183 |
-
buffer
|
|
|
184 |
yield buffer
|
185 |
-
time.sleep(0.05)
|
186 |
-
return
|
187 |
|
188 |
# -----------------------------------------------------------------------------
|
189 |
-
# Gradio Interface
|
190 |
# -----------------------------------------------------------------------------
|
191 |
-
|
192 |
demo = gr.ChatInterface(
|
193 |
fn=generate,
|
194 |
additional_inputs=[
|
195 |
-
gr.Slider(label="Max new tokens", minimum=1, maximum=
|
196 |
-
gr.Slider(label="Temperature", minimum=0.
|
197 |
-
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
198 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
|
|
199 |
],
|
200 |
examples=[
|
201 |
-
|
202 |
-
["Explain
|
203 |
-
|
204 |
-
[{
|
205 |
-
"text": "Describe what you see in the image.",
|
206 |
-
"files": ["examples/3.jpg"]
|
207 |
-
}],
|
208 |
-
# Example with video file (ensure you have a valid video file).
|
209 |
-
[{
|
210 |
-
"text": "@video-infer Summarize the events shown in the video.",
|
211 |
-
"files": ["examples/sample_video.mp4"]
|
212 |
-
}],
|
213 |
],
|
214 |
cache_examples=False,
|
215 |
type="messages",
|
216 |
-
description="# **Mistral
|
217 |
fill_height=True,
|
218 |
textbox=gr.MultimodalTextbox(
|
219 |
label="Query Input",
|
220 |
file_types=["image", "video"],
|
221 |
file_count="multiple",
|
222 |
-
placeholder="
|
223 |
),
|
224 |
stop_btn="Stop Generation",
|
225 |
-
|
226 |
)
|
227 |
|
228 |
if __name__ == "__main__":
|
|
|
1 |
import os
|
2 |
+
import random
|
|
|
|
|
|
|
|
|
3 |
import uuid
|
4 |
import json
|
5 |
import time
|
6 |
+
import re
|
|
|
|
|
|
|
7 |
from threading import Thread
|
8 |
+
from datetime import datetime, timedelta
|
9 |
|
|
|
10 |
import gradio as gr
|
11 |
+
import torch
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
+
import cv2
|
15 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
16 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
17 |
|
18 |
# -----------------------------------------------------------------------------
|
19 |
+
# Constants & Device Setup
|
20 |
# -----------------------------------------------------------------------------
|
21 |
+
MAX_MAX_NEW_TOKENS = 2048
|
22 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
23 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
|
25 |
+
# -----------------------------------------------------------------------------
|
26 |
+
# Helper Functions
|
27 |
+
# -----------------------------------------------------------------------------
|
28 |
def progress_bar_html(label: str) -> str:
|
|
|
29 |
return f'''
|
30 |
<div style="display: flex; align-items: center;">
|
31 |
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
|
|
41 |
</style>
|
42 |
'''
|
43 |
|
44 |
+
def load_system_prompt(repo_id: str, filename: str) -> str:
|
45 |
+
"""
|
46 |
+
Download and load a system prompt template from the given Hugging Face repo.
|
47 |
+
The template may include placeholders (e.g. {name}, {today}, {yesterday}) that get formatted.
|
48 |
"""
|
49 |
+
file_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
50 |
+
with open(file_path, "r") as file:
|
51 |
+
system_prompt = file.read()
|
52 |
+
today = datetime.today().strftime("%Y-%m-%d")
|
53 |
+
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
|
54 |
+
model_name = repo_id.split("/")[-1]
|
55 |
+
return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
|
56 |
+
|
57 |
+
def downsample_video(video_path: str):
|
58 |
+
"""
|
59 |
+
Extracts 10 evenly spaced frames from the video.
|
60 |
+
Returns a list of tuples (PIL.Image, timestamp_in_seconds).
|
61 |
"""
|
62 |
vidcap = cv2.VideoCapture(video_path)
|
63 |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
64 |
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
65 |
frames = []
|
66 |
+
if total_frames > 0 and fps > 0:
|
67 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
68 |
+
for i in frame_indices:
|
69 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
70 |
+
success, image = vidcap.read()
|
71 |
+
if success:
|
72 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
73 |
+
pil_image = Image.fromarray(image)
|
74 |
+
timestamp = round(i / fps, 2)
|
75 |
+
frames.append((pil_image, timestamp))
|
|
|
|
|
|
|
|
|
76 |
vidcap.release()
|
77 |
return frames
|
78 |
|
79 |
+
def build_prompt(chat_history, current_input_text, video_frames=None, image_files=None):
|
80 |
"""
|
81 |
+
Build a conversation prompt string.
|
82 |
+
The system prompt is added first, then previous chat history, and finally the current input.
|
83 |
+
If video_frames or image_files are provided, a note is added in the prompt.
|
84 |
"""
|
85 |
+
prompt = f"System: {SYSTEM_PROMPT}\n"
|
86 |
+
# Append chat history (if any)
|
87 |
+
for msg in chat_history:
|
88 |
+
role = msg.get("role", "").capitalize()
|
89 |
+
content = msg.get("content", "")
|
90 |
+
prompt += f"{role}: {content}\n"
|
91 |
+
prompt += f"User: {current_input_text}\n"
|
92 |
+
if video_frames:
|
93 |
+
for _, timestamp in video_frames:
|
94 |
+
prompt += f"[Video Frame at {timestamp} sec]\n"
|
95 |
+
if image_files:
|
96 |
+
for _ in image_files:
|
97 |
+
prompt += "[Image Input]\n"
|
98 |
+
prompt += "Assistant: "
|
99 |
+
return prompt
|
100 |
|
101 |
# -----------------------------------------------------------------------------
|
102 |
+
# Load Mistral Model & System Prompt
|
103 |
# -----------------------------------------------------------------------------
|
|
|
|
|
104 |
MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
|
|
105 |
SYSTEM_PROMPT = load_system_prompt(MODEL_ID, "SYSTEM_PROMPT.txt")
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
108 |
+
model = AutoModelForCausalLM.from_pretrained(
|
109 |
+
MODEL_ID,
|
110 |
+
torch_dtype=torch.float16,
|
111 |
+
device_map="auto"
|
112 |
+
).to(device)
|
113 |
+
model.eval()
|
114 |
|
115 |
# -----------------------------------------------------------------------------
|
116 |
# Main Generation Function
|
117 |
# -----------------------------------------------------------------------------
|
|
|
118 |
def generate(
|
119 |
input_dict: dict,
|
120 |
chat_history: list,
|
121 |
+
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
|
122 |
+
temperature: float = 0.6,
|
123 |
top_p: float = 0.9,
|
124 |
top_k: int = 50,
|
125 |
+
repetition_penalty: float = 1.2,
|
126 |
):
|
127 |
+
text = input_dict.get("text", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
files = input_dict.get("files", [])
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
# Separate video files from images based on file extension.
|
131 |
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
|
132 |
+
video_files = [f for f in files if str(f).lower().endswith(video_extensions)]
|
133 |
+
image_files = [f for f in files if not str(f).lower().endswith(video_extensions)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
+
video_frames = None
|
136 |
+
if video_files:
|
137 |
+
# Process the first video file.
|
138 |
+
video_path = video_files[0]
|
139 |
+
video_frames = downsample_video(video_path)
|
140 |
+
|
141 |
+
# Build the full prompt from the system prompt, chat history, current text, and file inputs.
|
142 |
+
prompt = build_prompt(chat_history, text, video_frames, image_files)
|
143 |
+
|
144 |
+
# Tokenize the prompt.
|
145 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
146 |
+
|
147 |
+
# Set up a streamer for incremental output.
|
148 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=20.0)
|
149 |
+
|
150 |
+
generation_kwargs = {
|
151 |
+
"input_ids": inputs["input_ids"],
|
152 |
+
"max_new_tokens": max_new_tokens,
|
153 |
+
"do_sample": True,
|
154 |
+
"temperature": temperature,
|
155 |
+
"top_p": top_p,
|
156 |
+
"top_k": top_k,
|
157 |
+
"repetition_penalty": repetition_penalty,
|
158 |
+
"streamer": streamer,
|
159 |
+
}
|
160 |
+
|
161 |
+
# Launch generation in a separate thread.
|
162 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
163 |
+
thread.start()
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
buffer = ""
|
166 |
+
yield progress_bar_html("Processing with Mistral")
|
167 |
+
for new_text in streamer:
|
168 |
+
buffer += new_text
|
169 |
+
time.sleep(0.01)
|
170 |
yield buffer
|
|
|
|
|
171 |
|
172 |
# -----------------------------------------------------------------------------
|
173 |
+
# Gradio Interface
|
174 |
# -----------------------------------------------------------------------------
|
|
|
175 |
demo = gr.ChatInterface(
|
176 |
fn=generate,
|
177 |
additional_inputs=[
|
178 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
179 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
180 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
181 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
182 |
+
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
183 |
],
|
184 |
examples=[
|
185 |
+
[{"text": "Describe the content of the video.", "files": ["examples/sample_video.mp4"]}],
|
186 |
+
[{"text": "Explain what is in this image.", "files": ["examples/sample_image.jpg"]}],
|
187 |
+
["Tell me a fun fact about space."],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
],
|
189 |
cache_examples=False,
|
190 |
type="messages",
|
191 |
+
description="# **Mistral Chatbot with Video Inference**\nA chatbot built with Mistral (via Transformers) that supports text, image, and video (frame extraction) inputs.",
|
192 |
fill_height=True,
|
193 |
textbox=gr.MultimodalTextbox(
|
194 |
label="Query Input",
|
195 |
file_types=["image", "video"],
|
196 |
file_count="multiple",
|
197 |
+
placeholder="Type your message here. Optionally attach images or video."
|
198 |
),
|
199 |
stop_btn="Stop Generation",
|
200 |
+
multimodal=True,
|
201 |
)
|
202 |
|
203 |
if __name__ == "__main__":
|