Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,364 +1,302 @@
|
|
1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import spaces
|
3 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
4 |
-
from qwen_vl_utils import process_vision_info
|
5 |
-
import torch
|
6 |
-
from PIL import Image
|
7 |
import os
|
8 |
-
import
|
9 |
-
import
|
|
|
10 |
from threading import Thread
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
from
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
raise ValueError(f"The file {blob_path} was not found.")
|
63 |
-
except Exception as e:
|
64 |
-
raise ValueError(f"An error occurred while processing the file: {e}")
|
65 |
-
|
66 |
-
def get_media_file(media_input):
|
67 |
"""
|
68 |
-
|
69 |
-
If
|
|
|
70 |
"""
|
71 |
-
|
72 |
-
|
|
|
|
|
73 |
else:
|
74 |
-
|
75 |
-
# Convert numpy array to PIL image if needed
|
76 |
-
media_input = Image.fromarray(media_input)
|
77 |
-
temp_filename = f"temp_{uuid.uuid4()}.png"
|
78 |
-
media_input.save(temp_filename)
|
79 |
-
return temp_filename
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
@spaces.GPU
|
82 |
-
def
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
else:
|
93 |
-
try:
|
94 |
-
media_path, media_type = identify_and_save_blob(media_input)
|
95 |
-
except Exception as e:
|
96 |
-
raise ValueError("Unsupported media type. Please upload a valid image.")
|
97 |
-
else:
|
98 |
-
# media_input is a PIL image (or numpy array) coming from gr.Image
|
99 |
-
media_path = get_media_file(media_input)
|
100 |
-
media_type = "image"
|
101 |
-
|
102 |
-
messages = [
|
103 |
-
{
|
104 |
-
"role": "user",
|
105 |
-
"content": [
|
106 |
-
{
|
107 |
-
"type": media_type,
|
108 |
-
media_type: media_path
|
109 |
-
},
|
110 |
-
{"type": "text", "text": text_input},
|
111 |
-
],
|
112 |
-
}
|
113 |
-
]
|
114 |
-
|
115 |
-
text = processor.apply_chat_template(
|
116 |
-
messages, tokenize=False, add_generation_prompt=True
|
117 |
-
)
|
118 |
-
image_inputs, _ = process_vision_info(messages)
|
119 |
-
inputs = processor(
|
120 |
-
text=[text],
|
121 |
-
images=image_inputs,
|
122 |
-
padding=True,
|
123 |
-
return_tensors="pt",
|
124 |
-
).to("cuda")
|
125 |
-
|
126 |
-
streamer = TextIteratorStreamer(
|
127 |
-
processor.tokenizer, skip_prompt=True, skip_special_tokens=True
|
128 |
-
)
|
129 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
130 |
-
|
131 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
132 |
-
thread.start()
|
133 |
-
|
134 |
-
buffer = ""
|
135 |
-
for new_text in streamer:
|
136 |
-
buffer += new_text
|
137 |
-
# Remove <|im_end|> or similar tokens from the output
|
138 |
-
buffer = buffer.replace("<|im_end|>", "")
|
139 |
-
yield buffer
|
140 |
-
|
141 |
-
def format_plain_text(output_text):
|
142 |
-
"""Formats the output text as plain text without LaTeX delimiters."""
|
143 |
-
plain_text = output_text.replace("\\(", "").replace("\\)", "").replace("\\[", "").replace("\\]", "")
|
144 |
-
return plain_text
|
145 |
-
|
146 |
-
def generate_document(media_input, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size):
|
147 |
-
"""Generates a document with the input image and plain text output."""
|
148 |
-
# Ensure media_input is a file path.
|
149 |
-
media_path = get_media_file(media_input)
|
150 |
-
plain_text = format_plain_text(output_text)
|
151 |
-
if file_format == "pdf":
|
152 |
-
return generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size)
|
153 |
-
elif file_format == "docx":
|
154 |
-
return generate_docx(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size)
|
155 |
-
|
156 |
-
def generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size):
|
157 |
-
"""Generates a PDF document."""
|
158 |
-
filename = f"output_{uuid.uuid4()}.pdf"
|
159 |
-
doc = SimpleDocTemplate(
|
160 |
-
filename,
|
161 |
-
pagesize=A4,
|
162 |
-
rightMargin=inch,
|
163 |
-
leftMargin=inch,
|
164 |
-
topMargin=inch,
|
165 |
-
bottomMargin=inch
|
166 |
-
)
|
167 |
-
styles = getSampleStyleSheet()
|
168 |
-
styles["Normal"].fontName = font_choice
|
169 |
-
styles["Normal"].fontSize = int(font_size)
|
170 |
-
styles["Normal"].leading = int(font_size) * line_spacing
|
171 |
-
styles["Normal"].alignment = {
|
172 |
-
"Left": 0,
|
173 |
-
"Center": 1,
|
174 |
-
"Right": 2,
|
175 |
-
"Justified": 4
|
176 |
-
}[alignment]
|
177 |
-
|
178 |
-
# Register font (assumes font files are available in a folder named "font")
|
179 |
-
font_path = f"font/{font_choice}"
|
180 |
-
pdfmetrics.registerFont(TTFont(font_choice, font_path))
|
181 |
-
|
182 |
-
story = []
|
183 |
-
|
184 |
-
# Add image with size adjustment
|
185 |
-
image_sizes = {
|
186 |
-
"Small": (200, 200),
|
187 |
-
"Medium": (400, 400),
|
188 |
-
"Large": (600, 600)
|
189 |
}
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
#
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
211 |
}
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
}
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
244 |
}
|
245 |
-
|
246 |
-
|
247 |
-
|
|
|
|
|
|
|
|
|
248 |
}
|
249 |
-
|
250 |
-
|
|
|
|
|
251 |
}
|
252 |
"""
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
).then(
|
279 |
-
lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]
|
280 |
-
)
|
281 |
-
|
282 |
-
# Add examples directly usable by clicking
|
283 |
-
with gr.Row():
|
284 |
-
gr.Examples(
|
285 |
-
examples=[
|
286 |
-
["examples/4.png", "solve the problem", "Math Prase"],
|
287 |
-
["examples/1.png", "summarize the letter", "Text Analogy Ocrtest"],
|
288 |
-
["examples/2.jpg", "Summarize the full image in detail", "Latex OCR"],
|
289 |
-
["examples/3.png", "Describe the photo", "Qwen2VL Base"],
|
290 |
-
],
|
291 |
-
inputs=[input_media, text_input, model_choice],
|
292 |
-
outputs=[output_text, plain_text_output],
|
293 |
-
fn=lambda img, question, model: qwen_inference(model, img, question),
|
294 |
-
cache_examples=False,
|
295 |
)
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
label="Line Spacing"
|
302 |
-
)
|
303 |
-
font_size = gr.Dropdown(
|
304 |
-
choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"],
|
305 |
-
value="12",
|
306 |
-
label="Font Size"
|
307 |
)
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
"fonnts.com-aptos-light.ttf",
|
337 |
-
"georgia.ttf",
|
338 |
-
"segoeuithis.ttf",
|
339 |
-
"youyuan.TTF",
|
340 |
-
"TfPonetoneExpanded-7BJZA.ttf",
|
341 |
-
],
|
342 |
-
value="youyuan.TTF",
|
343 |
-
label="Font Choice"
|
344 |
-
)
|
345 |
-
alignment = gr.Dropdown(
|
346 |
-
choices=["Left", "Center", "Right", "Justified"],
|
347 |
-
value="Justified",
|
348 |
-
label="Text Alignment"
|
349 |
-
)
|
350 |
-
image_size = gr.Dropdown(
|
351 |
-
choices=["Small", "Medium", "Large"],
|
352 |
-
value="Small",
|
353 |
-
label="Image Size"
|
354 |
-
)
|
355 |
-
file_format = gr.Radio(["pdf", "docx"], label="File Format", value="pdf")
|
356 |
-
with gr.Row():
|
357 |
-
get_document_btn = gr.Button(value="Get Document", elem_classes="download-btn")
|
358 |
-
get_document_btn.click(
|
359 |
-
generate_document,
|
360 |
-
[input_media, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size],
|
361 |
-
gr.File(label="Download Document")
|
362 |
-
)
|
363 |
-
|
364 |
-
demo.launch(debug=True)
|
|
|
1 |
+
import subprocess
|
2 |
+
subprocess.run(
|
3 |
+
'pip install flash-attn==2.7.0.post2 --no-build-isolation',
|
4 |
+
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
|
5 |
+
shell=True
|
6 |
+
)
|
7 |
+
subprocess.run(
|
8 |
+
'pip install transformers',
|
9 |
+
shell=True
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
import spaces
|
|
|
|
|
|
|
|
|
14 |
import os
|
15 |
+
import re
|
16 |
+
import logging
|
17 |
+
from typing import List
|
18 |
from threading import Thread
|
19 |
+
import base64
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import gradio as gr
|
23 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
24 |
+
|
25 |
+
# ----------------------------------------------------------------------
|
26 |
+
# 1. Setup Model & Tokenizer
|
27 |
+
# ----------------------------------------------------------------------
|
28 |
+
model_name = 'prithivMLmods/Raptor-X5-UIGEN' # Change as needed
|
29 |
+
use_thread = True # Generation happens in a background thread
|
30 |
+
|
31 |
+
model = AutoModelForCausalLM.from_pretrained(
|
32 |
+
model_name,
|
33 |
+
torch_dtype=torch.bfloat16,
|
34 |
+
trust_remote_code=True
|
35 |
+
).to("cuda")
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
37 |
+
|
38 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
39 |
+
logging.basicConfig(level=logging.INFO)
|
40 |
+
logger = logging.getLogger(__name__)
|
41 |
+
|
42 |
+
# ----------------------------------------------------------------------
|
43 |
+
# 2. Two-Phase Prompt Templates
|
44 |
+
# ----------------------------------------------------------------------
|
45 |
+
s1_inference_prompt_think_only = """<|im_start|>user
|
46 |
+
{question}<|im_end|>
|
47 |
+
<|im_start|>assistant
|
48 |
+
<|im_start|>think
|
49 |
+
"""
|
50 |
|
51 |
+
# ----------------------------------------------------------------------
|
52 |
+
# 3. Generation Parameter Setup
|
53 |
+
# ----------------------------------------------------------------------
|
54 |
+
THINK_MAX_NEW_TOKENS = 12000
|
55 |
+
ANSWER_MAX_NEW_TOKENS = 12000
|
56 |
+
|
57 |
+
def initialize_gen_kwargs():
|
58 |
+
return {
|
59 |
+
"max_new_tokens": 1024, # default; will be overwritten per phase
|
60 |
+
"do_sample": True,
|
61 |
+
"temperature": 0.7,
|
62 |
+
"top_p": 0.9,
|
63 |
+
"repetition_penalty": 1.05,
|
64 |
+
# "eos_token_id": model.generation_config.eos_token_id, # Removed to avoid premature stopping
|
65 |
+
"pad_token_id": tokenizer.pad_token_id,
|
66 |
+
"use_cache": True,
|
67 |
+
"streamer": None # dynamically added
|
68 |
+
}
|
69 |
+
|
70 |
+
# ----------------------------------------------------------------------
|
71 |
+
# 4. Helper to submit chat
|
72 |
+
# ----------------------------------------------------------------------
|
73 |
+
def submit_chat(chatbot, text_input):
|
74 |
+
if not text_input.strip():
|
75 |
+
return chatbot, ""
|
76 |
+
response = ""
|
77 |
+
chatbot.append((text_input, response))
|
78 |
+
return chatbot, ""
|
79 |
+
|
80 |
+
# ----------------------------------------------------------------------
|
81 |
+
# 5. Artifacts Handling
|
82 |
+
# We parse code from the final answer and display it in an iframe
|
83 |
+
# ----------------------------------------------------------------------
|
84 |
+
def extract_html_code_block(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
85 |
"""
|
86 |
+
Look for a ```html ... ``` block in the text.
|
87 |
+
If found, return only that block content.
|
88 |
+
Otherwise, return the entire text.
|
89 |
"""
|
90 |
+
pattern = r'```html\s*(.*?)\s*```'
|
91 |
+
match = re.search(pattern, text, re.DOTALL)
|
92 |
+
if match:
|
93 |
+
return match.group(1).strip()
|
94 |
else:
|
95 |
+
return text.strip()
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
def send_to_sandbox(html_code: str) -> str:
|
98 |
+
"""
|
99 |
+
Convert the code to a data URI iframe so it can be rendered
|
100 |
+
inside Gradio HTML component.
|
101 |
+
"""
|
102 |
+
encoded_html = base64.b64encode(html_code.encode('utf-8')).decode('utf-8')
|
103 |
+
data_uri = f"data:text/html;charset=utf-8;base64,{encoded_html}"
|
104 |
+
return f'<iframe src="{data_uri}" width="100%" height="920px"></iframe>'
|
105 |
+
|
106 |
+
# ----------------------------------------------------------------------
|
107 |
+
# 6. The Two-Phase Streaming Inference
|
108 |
+
# - Phase 1: "think" (chain-of-thought)
|
109 |
+
# - Phase 2: "answer"
|
110 |
+
# ----------------------------------------------------------------------
|
111 |
@spaces.GPU
|
112 |
+
def ovis_chat(chatbot: List[List[str]]):
|
113 |
+
# Phase 1: chain-of-thought
|
114 |
+
last_query = chatbot[-1][0]
|
115 |
+
formatted_think_prompt = s1_inference_prompt_think_only.format(question=last_query)
|
116 |
+
input_ids_think = tokenizer.encode(formatted_think_prompt, return_tensors="pt").to(model.device)
|
117 |
+
attention_mask_think = torch.ne(input_ids_think, tokenizer.pad_token_id).to(model.device)
|
118 |
+
|
119 |
+
think_inputs = {
|
120 |
+
"input_ids": input_ids_think,
|
121 |
+
"attention_mask": attention_mask_think
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
}
|
123 |
+
gen_kwargs_think = initialize_gen_kwargs()
|
124 |
+
gen_kwargs_think["max_new_tokens"] = THINK_MAX_NEW_TOKENS
|
125 |
+
think_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
126 |
+
gen_kwargs_think["streamer"] = think_streamer
|
127 |
+
|
128 |
+
full_think = ""
|
129 |
+
with torch.inference_mode():
|
130 |
+
thread_think = Thread(target=lambda: model.generate(**think_inputs, **gen_kwargs_think))
|
131 |
+
thread_think.start()
|
132 |
+
for new_text in think_streamer:
|
133 |
+
full_think += new_text
|
134 |
+
display_text = f"<|im_start|>think\n{full_think.strip()}"
|
135 |
+
chatbot[-1][1] = display_text
|
136 |
+
yield chatbot, "" # second return is artifact placeholder
|
137 |
+
thread_think.join()
|
138 |
+
|
139 |
+
# Phase 2: answer
|
140 |
+
new_prompt = formatted_think_prompt + full_think.strip() + "\n<|im_start|>answer\n"
|
141 |
+
input_ids_answer = tokenizer.encode(new_prompt, return_tensors="pt").to(model.device)
|
142 |
+
attention_mask_answer = torch.ne(input_ids_answer, tokenizer.pad_token_id).to(model.device)
|
143 |
+
|
144 |
+
answer_inputs = {
|
145 |
+
"input_ids": input_ids_answer,
|
146 |
+
"attention_mask": attention_mask_answer
|
147 |
}
|
148 |
+
gen_kwargs_answer = initialize_gen_kwargs()
|
149 |
+
gen_kwargs_answer["max_new_tokens"] = ANSWER_MAX_NEW_TOKENS
|
150 |
+
answer_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
151 |
+
gen_kwargs_answer["streamer"] = answer_streamer
|
152 |
+
|
153 |
+
full_answer = ""
|
154 |
+
with torch.inference_mode():
|
155 |
+
thread_answer = Thread(target=lambda: model.generate(**answer_inputs, **gen_kwargs_answer))
|
156 |
+
thread_answer.start()
|
157 |
+
for new_text in answer_streamer:
|
158 |
+
full_answer += new_text
|
159 |
+
display_text = (
|
160 |
+
f"<|im_start|>think\n{full_think.strip()}\n\n"
|
161 |
+
f"<|im_start|>answer\n{full_answer.strip()}"
|
162 |
+
)
|
163 |
+
chatbot[-1][1] = display_text
|
164 |
+
yield chatbot, ""
|
165 |
+
thread_answer.join()
|
166 |
+
|
167 |
+
log_conversation(chatbot)
|
168 |
+
|
169 |
+
# Once final answer is complete, parse out HTML code block and
|
170 |
+
# return it as an artifact (iframe).
|
171 |
+
html_code = extract_html_code_block(full_answer)
|
172 |
+
sandbox_iframe = send_to_sandbox(html_code)
|
173 |
+
yield chatbot, sandbox_iframe
|
174 |
+
|
175 |
+
# ----------------------------------------------------------------------
|
176 |
+
# 7. Logging and Clearing
|
177 |
+
# ----------------------------------------------------------------------
|
178 |
+
def log_conversation(chatbot: List[List[str]]):
|
179 |
+
logger.info("[CONVERSATION]")
|
180 |
+
for i, (query, response) in enumerate(chatbot, 1):
|
181 |
+
logger.info(f"Q{i}: {query}\nA{i}: {response}")
|
182 |
+
|
183 |
+
def clear_chat():
|
184 |
+
return [], "", ""
|
185 |
+
|
186 |
+
# ----------------------------------------------------------------------
|
187 |
+
# 8. Gradio UI Setup
|
188 |
+
# ----------------------------------------------------------------------
|
189 |
+
css_code = """
|
190 |
+
.left_header {
|
191 |
+
display: flex;
|
192 |
+
flex-direction: column;
|
193 |
+
justify-content: center;
|
194 |
+
align-items: center;
|
195 |
+
}
|
196 |
+
|
197 |
+
.right_panel {
|
198 |
+
margin-top: 16px;
|
199 |
+
border: 1px solid #BFBFC4;
|
200 |
+
border-radius: 8px;
|
201 |
+
overflow: hidden;
|
202 |
+
}
|
203 |
+
|
204 |
+
.render_header {
|
205 |
+
height: 30px;
|
206 |
+
width: 100%;
|
207 |
+
padding: 5px 16px;
|
208 |
+
background-color: #f5f5f5;
|
209 |
+
}
|
210 |
+
|
211 |
+
.header_btn {
|
212 |
+
display: inline-block;
|
213 |
+
height: 10px;
|
214 |
+
width: 10px;
|
215 |
+
border-radius: 50%;
|
216 |
+
margin-right: 4px;
|
217 |
+
}
|
218 |
+
|
219 |
+
.render_header > .header_btn:nth-child(1) {
|
220 |
+
background-color: #f5222d;
|
221 |
}
|
222 |
+
|
223 |
+
.render_header > .header_btn:nth-child(2) {
|
224 |
+
background-color: #faad14;
|
225 |
+
}
|
226 |
+
.render_header > .header_btn:nth-child(3) {
|
227 |
+
background-color: #52c41a;
|
228 |
}
|
229 |
+
|
230 |
+
.right_content {
|
231 |
+
height: 920px;
|
232 |
+
display: flex;
|
233 |
+
flex-direction: column;
|
234 |
+
justify-content: center;
|
235 |
+
align-items: center;
|
236 |
}
|
237 |
+
|
238 |
+
.html_content {
|
239 |
+
width: 100%;
|
240 |
+
height: 920px;
|
241 |
}
|
242 |
"""
|
243 |
|
244 |
+
svg_content = """
|
245 |
+
<svg width="40" height="40" viewBox="0 0 45 45" fill="none" xmlns="http://www.w3.org/2000/svg">
|
246 |
+
<circle cx="22.5" cy="22.5" r="22.5" fill="#5572F9"/>
|
247 |
+
<path d="M22.5 11.25L26.25 16.875H18.75L22.5 11.25Z" fill="white"/>
|
248 |
+
<path d="M22.5 33.75L26.25 28.125H18.75L22.5 33.75Z" fill="white"/>
|
249 |
+
<path d="M28.125 22.5L22.5 28.125L16.875 22.5L22.5 16.875L28.125 22.5Z" fill="white"/>
|
250 |
+
</svg>
|
251 |
+
"""
|
252 |
+
|
253 |
+
with gr.Blocks(title=model_name.split('/')[-1], css=css_code) as demo:
|
254 |
+
gr.HTML(f"""
|
255 |
+
<div class="left_header" style="margin-bottom: 20px;">
|
256 |
+
{svg_content}
|
257 |
+
<h1>{model_name.split('/')[-1]} - Chat + Artifacts</h1>
|
258 |
+
<p>(Two-phase chain-of-thought with artifact extraction)</p>
|
259 |
+
</div>
|
260 |
+
""")
|
261 |
+
|
262 |
+
with gr.Row():
|
263 |
+
with gr.Column(scale=4):
|
264 |
+
chatbot = gr.Chatbot(
|
265 |
+
label="Chat",
|
266 |
+
height=520,
|
267 |
+
show_copy_button=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
)
|
269 |
+
with gr.Row():
|
270 |
+
text_input = gr.Textbox(
|
271 |
+
label="Prompt",
|
272 |
+
placeholder="Enter your query...",
|
273 |
+
lines=1
|
|
|
|
|
|
|
|
|
|
|
|
|
274 |
)
|
275 |
+
with gr.Row():
|
276 |
+
submit_btn = gr.Button("Send", variant="primary")
|
277 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
278 |
+
with gr.Column(scale=6):
|
279 |
+
gr.HTML('<div class="render_header"><span class="header_btn"></span><span class="header_btn"></span><span class="header_btn"></span></div>')
|
280 |
+
artifact_html = gr.HTML(
|
281 |
+
value="",
|
282 |
+
elem_classes="html_content"
|
283 |
+
)
|
284 |
+
|
285 |
+
submit_btn.click(
|
286 |
+
submit_chat, [chatbot, text_input], [chatbot, text_input]
|
287 |
+
).then(
|
288 |
+
ovis_chat, [chatbot], [chatbot, artifact_html]
|
289 |
+
)
|
290 |
+
|
291 |
+
text_input.submit(
|
292 |
+
submit_chat, [chatbot, text_input], [chatbot, text_input]
|
293 |
+
).then(
|
294 |
+
ovis_chat, [chatbot], [chatbot, artifact_html]
|
295 |
+
)
|
296 |
+
|
297 |
+
clear_btn.click(
|
298 |
+
clear_chat,
|
299 |
+
outputs=[chatbot, text_input, artifact_html]
|
300 |
+
)
|
301 |
+
|
302 |
+
demo.queue(default_concurrency_limit=1).launch(server_name="0.0.0.0", share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|