Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer | |
from transformers.image_utils import load_image | |
from threading import Thread | |
import time | |
import torch | |
import spaces | |
# Define model options | |
MODEL_OPTIONS = { | |
"Qwen2VL Base": "Qwen/Qwen2-VL-2B-Instruct", | |
"Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct", | |
"Math Prase": "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct", | |
"Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct" | |
} | |
# Global variables for model and processor | |
model = None | |
processor = None | |
# Function to load the selected model | |
def load_model(model_name): | |
global model, processor | |
model_id = MODEL_OPTIONS[model_name] | |
print(f"Loading model: {model_id}") | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
print(f"Model {model_id} loaded successfully!") | |
return f"Model {model_name} loaded!" | |
def model_inference(input_dict, history, model_choice): | |
global model, processor | |
# Load the selected model if not already loaded | |
if model is None or processor is None: | |
load_model(model_choice) | |
text = input_dict["text"] | |
files = input_dict["files"] | |
# Load images if provided | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
# Validate input | |
if text == "" and not images: | |
gr.Error("Please input a query and optionally image(s).") | |
return | |
if text == "" and images: | |
gr.Error("Please input a text query along with the image(s).") | |
return | |
# Prepare messages for the model | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
], | |
} | |
] | |
# Apply chat template and process inputs | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor( | |
text=[prompt], | |
images=images if images else None, | |
return_tensors="pt", | |
padding=True, | |
).to("cuda") | |
# Set up streamer for real-time output | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) | |
# Start generation in a separate thread | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
# Stream the output | |
buffer = "" | |
yield "Thinking..." | |
for new_text in streamer: | |
buffer += new_text | |
time.sleep(0.01) | |
yield buffer | |
# Example inputs | |
examples = [ | |
[{"text": "Describe the document?", "files": ["example_images/document.jpg"]}], | |
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], | |
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}], | |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], | |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], | |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], | |
] | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# **Qwen2.5-VL-3B-Instruct**") | |
# Model selection dropdown | |
model_choice = gr.Dropdown( | |
label="Model Selection", | |
choices=list(MODEL_OPTIONS.keys()), | |
value="Latex OCR" | |
) | |
# Load model button | |
load_model_btn = gr.Button("Load Model") | |
load_model_output = gr.Textbox(label="Model Load Status") | |
# Chat interface | |
chat_interface = gr.ChatInterface( | |
fn=model_inference, | |
description="Interact with the selected Qwen2-VL model.", | |
examples=examples, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
cache_examples=False, | |
additional_inputs=[model_choice] # Pass model_choice as an additional input | |
) | |
# Link the load model button to the load_model function | |
load_model_btn.click(load_model, inputs=model_choice, outputs=load_model_output) | |
# Launch the demo | |
demo.launch(debug=True) |