Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -28,40 +28,6 @@ aya_model = AutoModelForImageTextToText.from_pretrained(
|
|
28 |
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
29 |
)
|
30 |
|
31 |
-
def aya_vision_chat(image, text_prompt):
|
32 |
-
# If image is provided as a URL, load it via requests.
|
33 |
-
if isinstance(image, str):
|
34 |
-
response = requests.get(image)
|
35 |
-
image = Image.open(BytesIO(response.content))
|
36 |
-
|
37 |
-
messages = [{
|
38 |
-
"role": "user",
|
39 |
-
"content": [
|
40 |
-
{"type": "image", "image": image},
|
41 |
-
{"type": "text", "text": text_prompt},
|
42 |
-
],
|
43 |
-
}]
|
44 |
-
|
45 |
-
inputs = aya_processor.apply_chat_template(
|
46 |
-
messages,
|
47 |
-
padding=True,
|
48 |
-
add_generation_prompt=True,
|
49 |
-
tokenize=True,
|
50 |
-
return_dict=True,
|
51 |
-
return_tensors="pt"
|
52 |
-
).to(aya_model.device)
|
53 |
-
|
54 |
-
gen_tokens = aya_model.generate(
|
55 |
-
**inputs, max_new_tokens=300, do_sample=True, temperature=0.3
|
56 |
-
)
|
57 |
-
|
58 |
-
# Decode only the newly generated tokens.
|
59 |
-
response_text = aya_processor.tokenizer.decode(
|
60 |
-
gen_tokens[0][inputs.input_ids.shape[1]:],
|
61 |
-
skip_special_tokens=True
|
62 |
-
)
|
63 |
-
return response_text
|
64 |
-
|
65 |
@spaces.GPU
|
66 |
def model_inference(input_dict, history):
|
67 |
text = input_dict["text"].strip()
|
@@ -77,9 +43,40 @@ def model_inference(input_dict, history):
|
|
77 |
# For simplicity, use the first provided image.
|
78 |
image = load_image(files[0])
|
79 |
yield "Processing with Aya-Vision ββββββββββ 69%"
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
return
|
|
|
83 |
# Load images if provided.
|
84 |
if len(files) > 1:
|
85 |
images = [load_image(image) for image in files]
|
@@ -146,9 +143,9 @@ examples = [
|
|
146 |
|
147 |
demo = gr.ChatInterface(
|
148 |
fn=model_inference,
|
149 |
-
description="#
|
150 |
examples=examples,
|
151 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
152 |
stop_btn="Stop Generation",
|
153 |
multimodal=True,
|
154 |
cache_examples=False,
|
|
|
28 |
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
29 |
)
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
@spaces.GPU
|
32 |
def model_inference(input_dict, history):
|
33 |
text = input_dict["text"].strip()
|
|
|
43 |
# For simplicity, use the first provided image.
|
44 |
image = load_image(files[0])
|
45 |
yield "Processing with Aya-Vision ββββββββββ 69%"
|
46 |
+
messages = [{
|
47 |
+
"role": "user",
|
48 |
+
"content": [
|
49 |
+
{"type": "image", "image": image},
|
50 |
+
{"type": "text", "text": text_prompt},
|
51 |
+
],
|
52 |
+
}]
|
53 |
+
inputs = aya_processor.apply_chat_template(
|
54 |
+
messages,
|
55 |
+
padding=True,
|
56 |
+
add_generation_prompt=True,
|
57 |
+
tokenize=True,
|
58 |
+
return_dict=True,
|
59 |
+
return_tensors="pt"
|
60 |
+
).to(aya_model.device)
|
61 |
+
# Set up a streamer for Aya-Vision output
|
62 |
+
streamer = TextIteratorStreamer(aya_processor, skip_prompt=True, skip_special_tokens=True)
|
63 |
+
generation_kwargs = dict(
|
64 |
+
inputs,
|
65 |
+
streamer=streamer,
|
66 |
+
max_new_tokens=300,
|
67 |
+
do_sample=True,
|
68 |
+
temperature=0.3
|
69 |
+
)
|
70 |
+
thread = Thread(target=aya_model.generate, kwargs=generation_kwargs)
|
71 |
+
thread.start()
|
72 |
+
buffer = ""
|
73 |
+
for new_text in streamer:
|
74 |
+
buffer += new_text
|
75 |
+
buffer = buffer.replace("<|im_end|>", "")
|
76 |
+
time.sleep(0.01)
|
77 |
+
yield buffer
|
78 |
return
|
79 |
+
|
80 |
# Load images if provided.
|
81 |
if len(files) > 1:
|
82 |
images = [load_image(image) for image in files]
|
|
|
143 |
|
144 |
demo = gr.ChatInterface(
|
145 |
fn=model_inference,
|
146 |
+
description="# Multimodal OCR `@aya-vision 'prompt..'`",
|
147 |
examples=examples,
|
148 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple", placeholder="By default, it runs Qwen2VL. Tag @aya-vision for Aya Vision 8B"),
|
149 |
stop_btn="Stop Generation",
|
150 |
multimodal=True,
|
151 |
cache_examples=False,
|