Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,84 +1,148 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
3 |
from transformers.image_utils import load_image
|
4 |
from threading import Thread
|
5 |
import time
|
6 |
import torch
|
7 |
import spaces
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
14 |
trust_remote_code=True,
|
15 |
torch_dtype=torch.float16
|
16 |
).to("cuda").eval()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
@spaces.GPU
|
19 |
def model_inference(input_dict, history):
|
20 |
-
text = input_dict["text"]
|
21 |
-
files = input_dict
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
if len(files) > 1:
|
25 |
images = [load_image(image) for image in files]
|
26 |
elif len(files) == 1:
|
27 |
images = [load_image(files[0])]
|
28 |
else:
|
29 |
images = []
|
30 |
-
|
31 |
-
# Validate input
|
32 |
if text == "" and not images:
|
33 |
-
|
34 |
return
|
35 |
if text == "" and images:
|
36 |
-
|
37 |
return
|
38 |
|
39 |
-
# Prepare messages for the model
|
40 |
-
messages = [
|
41 |
-
|
42 |
-
|
43 |
-
"
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
inputs = processor(
|
53 |
text=[prompt],
|
54 |
images=images if images else None,
|
55 |
return_tensors="pt",
|
56 |
padding=True,
|
57 |
).to("cuda")
|
58 |
-
|
59 |
-
# Set up streamer for real-time output
|
60 |
-
streamer = TextIteratorStreamer(
|
61 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
62 |
-
|
63 |
-
# Start generation in a separate thread
|
64 |
-
thread = Thread(target=
|
65 |
thread.start()
|
66 |
-
|
67 |
-
# Stream the output
|
68 |
buffer = ""
|
69 |
yield "Thinking..."
|
70 |
for new_text in streamer:
|
71 |
buffer += new_text
|
72 |
-
# Remove <|im_end|> or similar tokens from the output
|
73 |
buffer = buffer.replace("<|im_end|>", "")
|
74 |
time.sleep(0.01)
|
75 |
yield buffer
|
76 |
|
77 |
-
#
|
|
|
|
|
78 |
examples = [
|
79 |
-
|
80 |
-
[{"text": "
|
81 |
-
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
82 |
[{"text": "Describe the photo", "files": ["examples/3.png"]}],
|
83 |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
84 |
[{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}],
|
@@ -87,12 +151,12 @@ examples = [
|
|
87 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
88 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
89 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
90 |
-
|
91 |
]
|
92 |
|
|
|
93 |
demo = gr.ChatInterface(
|
94 |
fn=model_inference,
|
95 |
-
description="# **Multimodal OCR**",
|
96 |
examples=examples,
|
97 |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
98 |
stop_btn="Stop Generation",
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import (
|
3 |
+
Qwen2VLForConditionalGeneration,
|
4 |
+
AutoProcessor,
|
5 |
+
TextIteratorStreamer,
|
6 |
+
AutoModelForImageTextToText,
|
7 |
+
)
|
8 |
from transformers.image_utils import load_image
|
9 |
from threading import Thread
|
10 |
import time
|
11 |
import torch
|
12 |
import spaces
|
13 |
+
from PIL import Image
|
14 |
+
import requests
|
15 |
+
from io import BytesIO
|
16 |
|
17 |
+
# -------------------------
|
18 |
+
# Qwen2-VL Model for OCR-based tasks
|
19 |
+
# -------------------------
|
20 |
+
QV_MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
21 |
+
qwen_processor = AutoProcessor.from_pretrained(QV_MODEL_ID, trust_remote_code=True)
|
22 |
+
qwen_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
23 |
+
QV_MODEL_ID,
|
24 |
trust_remote_code=True,
|
25 |
torch_dtype=torch.float16
|
26 |
).to("cuda").eval()
|
27 |
|
28 |
+
# -------------------------
|
29 |
+
# Aya-Vision Model for image-text tasks (@aya-vision)
|
30 |
+
# -------------------------
|
31 |
+
AYA_MODEL_ID = "CohereForAI/aya-vision-8b"
|
32 |
+
aya_processor = AutoProcessor.from_pretrained(AYA_MODEL_ID)
|
33 |
+
aya_model = AutoModelForImageTextToText.from_pretrained(
|
34 |
+
AYA_MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
35 |
+
)
|
36 |
+
|
37 |
+
def aya_vision_chat(image, text_prompt):
|
38 |
+
# If image is provided as a URL, load it via requests.
|
39 |
+
if isinstance(image, str):
|
40 |
+
response = requests.get(image)
|
41 |
+
image = Image.open(BytesIO(response.content))
|
42 |
+
|
43 |
+
messages = [{
|
44 |
+
"role": "user",
|
45 |
+
"content": [
|
46 |
+
{"type": "image", "image": image},
|
47 |
+
{"type": "text", "text": text_prompt},
|
48 |
+
],
|
49 |
+
}]
|
50 |
+
|
51 |
+
inputs = aya_processor.apply_chat_template(
|
52 |
+
messages,
|
53 |
+
padding=True,
|
54 |
+
add_generation_prompt=True,
|
55 |
+
tokenize=True,
|
56 |
+
return_dict=True,
|
57 |
+
return_tensors="pt"
|
58 |
+
).to(aya_model.device)
|
59 |
+
|
60 |
+
gen_tokens = aya_model.generate(
|
61 |
+
**inputs, max_new_tokens=300, do_sample=True, temperature=0.3
|
62 |
+
)
|
63 |
+
|
64 |
+
# Decode only the newly generated tokens.
|
65 |
+
response_text = aya_processor.tokenizer.decode(
|
66 |
+
gen_tokens[0][inputs.input_ids.shape[1]:],
|
67 |
+
skip_special_tokens=True
|
68 |
+
)
|
69 |
+
return response_text
|
70 |
+
|
71 |
@spaces.GPU
|
72 |
def model_inference(input_dict, history):
|
73 |
+
text = input_dict["text"].strip()
|
74 |
+
files = input_dict.get("files", [])
|
75 |
+
|
76 |
+
if text.lower().startswith("@aya-vision"):
|
77 |
+
# Remove the command prefix and trim the prompt.
|
78 |
+
text_prompt = text[len("@aya-vision"):].strip()
|
79 |
+
if not files:
|
80 |
+
yield "Error: Please provide an image for the @aya-vision feature."
|
81 |
+
return
|
82 |
+
else:
|
83 |
+
# For simplicity, use the first provided image.
|
84 |
+
image = load_image(files[0])
|
85 |
+
yield "Processing with Aya-Vision ββββββββββ 69%"
|
86 |
+
response_text = aya_vision_chat(image, text_prompt)
|
87 |
+
yield response_text
|
88 |
+
return
|
89 |
+
# Load images if provided.
|
90 |
if len(files) > 1:
|
91 |
images = [load_image(image) for image in files]
|
92 |
elif len(files) == 1:
|
93 |
images = [load_image(files[0])]
|
94 |
else:
|
95 |
images = []
|
96 |
+
|
97 |
+
# Validate input: require both text and (optionally) image(s).
|
98 |
if text == "" and not images:
|
99 |
+
yield "Error: Please input a query and optionally image(s)."
|
100 |
return
|
101 |
if text == "" and images:
|
102 |
+
yield "Error: Please input a text query along with the image(s)."
|
103 |
return
|
104 |
|
105 |
+
# Prepare messages for the Qwen2-VL model.
|
106 |
+
messages = [{
|
107 |
+
"role": "user",
|
108 |
+
"content": [
|
109 |
+
*[{"type": "image", "image": image} for image in images],
|
110 |
+
{"type": "text", "text": text},
|
111 |
+
],
|
112 |
+
}]
|
113 |
+
|
114 |
+
prompt = qwen_processor.apply_chat_template(
|
115 |
+
messages, tokenize=False, add_generation_prompt=True
|
116 |
+
)
|
117 |
+
inputs = qwen_processor(
|
|
|
118 |
text=[prompt],
|
119 |
images=images if images else None,
|
120 |
return_tensors="pt",
|
121 |
padding=True,
|
122 |
).to("cuda")
|
123 |
+
|
124 |
+
# Set up a streamer for real-time output.
|
125 |
+
streamer = TextIteratorStreamer(qwen_processor, skip_prompt=True, skip_special_tokens=True)
|
126 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
127 |
+
|
128 |
+
# Start generation in a separate thread.
|
129 |
+
thread = Thread(target=qwen_model.generate, kwargs=generation_kwargs)
|
130 |
thread.start()
|
131 |
+
|
|
|
132 |
buffer = ""
|
133 |
yield "Thinking..."
|
134 |
for new_text in streamer:
|
135 |
buffer += new_text
|
|
|
136 |
buffer = buffer.replace("<|im_end|>", "")
|
137 |
time.sleep(0.01)
|
138 |
yield buffer
|
139 |
|
140 |
+
# -------------------------
|
141 |
+
# Example inputs for the combined interface
|
142 |
+
# -------------------------
|
143 |
examples = [
|
144 |
+
[{"text": "@aya-vision Extract JSON from the image", "files": ["example_images/document.jpg"]}],
|
145 |
+
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
|
|
|
146 |
[{"text": "Describe the photo", "files": ["examples/3.png"]}],
|
147 |
[{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}],
|
148 |
[{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}],
|
|
|
151 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
152 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
153 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
|
|
154 |
]
|
155 |
|
156 |
+
# Build the Gradio ChatInterface.
|
157 |
demo = gr.ChatInterface(
|
158 |
fn=model_inference,
|
159 |
+
description="# **Multimodal OCR with @aya-vision Feature**",
|
160 |
examples=examples,
|
161 |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
162 |
stop_btn="Stop Generation",
|