Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,37 +6,16 @@ import time
|
|
6 |
import torch
|
7 |
import spaces
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
"Qwen2VL Base": "Qwen/Qwen2-VL-2B-Instruct",
|
12 |
-
"Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct",
|
13 |
-
"Math Prase": "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct",
|
14 |
-
"Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
|
15 |
-
}
|
16 |
-
|
17 |
-
# Default model setup
|
18 |
-
current_model_id = MODEL_OPTIONS["Latex OCR"]
|
19 |
-
processor = AutoProcessor.from_pretrained(current_model_id, trust_remote_code=True)
|
20 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
21 |
-
|
22 |
trust_remote_code=True,
|
23 |
torch_dtype=torch.float16
|
24 |
).to("cuda").eval()
|
25 |
|
26 |
@spaces.GPU
|
27 |
-
def model_inference(input_dict, history
|
28 |
-
global model, processor
|
29 |
-
|
30 |
-
# Reload the model and processor if the model selection changes
|
31 |
-
if model_id != current_model_id:
|
32 |
-
current_model_id = model_id
|
33 |
-
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
34 |
-
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
35 |
-
model_id,
|
36 |
-
trust_remote_code=True,
|
37 |
-
torch_dtype=torch.float16
|
38 |
-
).to("cuda").eval()
|
39 |
-
|
40 |
text = input_dict["text"]
|
41 |
files = input_dict["files"]
|
42 |
|
@@ -102,18 +81,12 @@ examples = [
|
|
102 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
103 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
104 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
105 |
-
]
|
106 |
|
107 |
-
|
108 |
-
model_choice = gr.Dropdown(
|
109 |
-
label="Model Selection",
|
110 |
-
choices=list(MODEL_OPTIONS.keys()),
|
111 |
-
value="Latex OCR"
|
112 |
-
)
|
113 |
|
114 |
demo = gr.ChatInterface(
|
115 |
-
fn=
|
116 |
-
description="# **
|
117 |
examples=examples,
|
118 |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
119 |
stop_btn="Stop Generation",
|
|
|
6 |
import torch
|
7 |
import spaces
|
8 |
|
9 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
10 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
12 |
+
MODEL_ID,
|
13 |
trust_remote_code=True,
|
14 |
torch_dtype=torch.float16
|
15 |
).to("cuda").eval()
|
16 |
|
17 |
@spaces.GPU
|
18 |
+
def model_inference(input_dict, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
text = input_dict["text"]
|
20 |
files = input_dict["files"]
|
21 |
|
|
|
81 |
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
|
82 |
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
|
83 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
|
|
84 |
|
85 |
+
]
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
demo = gr.ChatInterface(
|
88 |
+
fn=model_inference,
|
89 |
+
description="# **Multimodal OCR**",
|
90 |
examples=examples,
|
91 |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
92 |
stop_btn="Stop Generation",
|