Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,16 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
3 |
from transformers.image_utils import load_image
|
4 |
from threading import Thread
|
5 |
import time
|
6 |
import torch
|
7 |
-
import
|
|
|
|
|
8 |
|
9 |
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
|
10 |
-
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
11 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
12 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
13 |
MODEL_ID,
|
@@ -15,31 +18,65 @@ model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
15 |
torch_dtype=torch.float16
|
16 |
).to("cuda").eval()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
@spaces.GPU
|
19 |
def model_inference(input_dict, history):
|
20 |
text = input_dict["text"]
|
21 |
files = input_dict["files"]
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
else:
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
|
38 |
# Validate input
|
39 |
-
if text == "" and not
|
40 |
gr.Error("Please input a query and optionally image(s) or video(s).")
|
41 |
return
|
42 |
-
if text == "" and
|
43 |
gr.Error("Please input a text query along with the image(s) or video(s).")
|
44 |
return
|
45 |
|
@@ -48,8 +85,7 @@ def model_inference(input_dict, history):
|
|
48 |
{
|
49 |
"role": "user",
|
50 |
"content": [
|
51 |
-
*[{"type":
|
52 |
-
*[{"type": "video", "video": video} for video in videos],
|
53 |
{"type": "text", "text": text},
|
54 |
],
|
55 |
}
|
@@ -59,8 +95,8 @@ def model_inference(input_dict, history):
|
|
59 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
60 |
inputs = processor(
|
61 |
text=[prompt],
|
62 |
-
images=
|
63 |
-
videos=
|
64 |
return_tensors="pt",
|
65 |
padding=True,
|
66 |
).to("cuda")
|
|
|
1 |
import gradio as gr
|
2 |
+
import spaces
|
3 |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
4 |
from transformers.image_utils import load_image
|
5 |
from threading import Thread
|
6 |
import time
|
7 |
import torch
|
8 |
+
from PIL import Image
|
9 |
+
import uuid
|
10 |
+
import io
|
11 |
|
12 |
# Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ]
|
13 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
14 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
15 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
16 |
MODEL_ID,
|
|
|
18 |
torch_dtype=torch.float16
|
19 |
).to("cuda").eval()
|
20 |
|
21 |
+
# Supported media extensions
|
22 |
+
image_extensions = Image.registered_extensions()
|
23 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
24 |
+
|
25 |
+
def identify_and_save_blob(blob_path):
|
26 |
+
"""Identifies if the blob is an image or video and saves it accordingly."""
|
27 |
+
try:
|
28 |
+
with open(blob_path, 'rb') as file:
|
29 |
+
blob_content = file.read()
|
30 |
+
|
31 |
+
# Try to identify if it's an image
|
32 |
+
try:
|
33 |
+
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
34 |
+
extension = ".png" # Default to PNG for saving
|
35 |
+
media_type = "image"
|
36 |
+
except (IOError, SyntaxError):
|
37 |
+
# If it's not a valid image, assume it's a video
|
38 |
+
extension = ".mp4" # Default to MP4 for saving
|
39 |
+
media_type = "video"
|
40 |
+
|
41 |
+
# Create a unique filename
|
42 |
+
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
43 |
+
with open(filename, "wb") as f:
|
44 |
+
f.write(blob_content)
|
45 |
+
|
46 |
+
return filename, media_type
|
47 |
+
|
48 |
+
except FileNotFoundError:
|
49 |
+
raise ValueError(f"The file {blob_path} was not found.")
|
50 |
+
except Exception as e:
|
51 |
+
raise ValueError(f"An error occurred while processing the file: {e}")
|
52 |
+
|
53 |
@spaces.GPU
|
54 |
def model_inference(input_dict, history):
|
55 |
text = input_dict["text"]
|
56 |
files = input_dict["files"]
|
57 |
|
58 |
+
# Process media files (images or videos)
|
59 |
+
media_paths = []
|
60 |
+
media_types = []
|
61 |
+
for file in files:
|
62 |
+
if file.endswith(tuple([i for i, f in image_extensions.items()])):
|
63 |
+
media_type = "image"
|
64 |
+
elif file.endswith(video_extensions):
|
65 |
+
media_type = "video"
|
66 |
else:
|
67 |
+
try:
|
68 |
+
file, media_type = identify_and_save_blob(file)
|
69 |
+
except Exception as e:
|
70 |
+
gr.Error(f"Unsupported media type: {e}")
|
71 |
+
return
|
72 |
+
media_paths.append(file)
|
73 |
+
media_types.append(media_type)
|
74 |
|
75 |
# Validate input
|
76 |
+
if text == "" and not media_paths:
|
77 |
gr.Error("Please input a query and optionally image(s) or video(s).")
|
78 |
return
|
79 |
+
if text == "" and media_paths:
|
80 |
gr.Error("Please input a text query along with the image(s) or video(s).")
|
81 |
return
|
82 |
|
|
|
85 |
{
|
86 |
"role": "user",
|
87 |
"content": [
|
88 |
+
*[{"type": media_type, media_type: media_path} for media_path, media_type in zip(media_paths, media_types)],
|
|
|
89 |
{"type": "text", "text": text},
|
90 |
],
|
91 |
}
|
|
|
95 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
96 |
inputs = processor(
|
97 |
text=[prompt],
|
98 |
+
images=[load_image(path) for path, media_type in zip(media_paths, media_types) if media_type == "image"],
|
99 |
+
videos=[path for path, media_type in zip(media_paths, media_types) if media_type == "video"],
|
100 |
return_tensors="pt",
|
101 |
padding=True,
|
102 |
).to("cuda")
|