import gradio as gr import spaces from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer from transformers.image_utils import load_image from threading import Thread import time import torch from PIL import Image import uuid import io import os # Fine-tuned for OCR-based tasks from Qwen's [ Qwen/Qwen2-VL-2B-Instruct ] MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) model = Qwen2VLForConditionalGeneration.from_pretrained( MODEL_ID, trust_remote_code=True, torch_dtype=torch.float16 ).to("cuda").eval() # Supported media extensions image_extensions = Image.registered_extensions() video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp") def identify_and_save_blob(blob_path): """Identifies if the blob is an image or video and saves it accordingly.""" try: with open(blob_path, 'rb') as file: blob_content = file.read() # Try to identify if it's an image try: Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image extension = ".png" # Default to PNG for saving media_type = "image" except (IOError, SyntaxError): # If it's not a valid image, assume it's a video extension = ".mp4" # Default to MP4 for saving media_type = "video" # Create a unique filename filename = f"temp_{uuid.uuid4()}_media{extension}" with open(filename, "wb") as f: f.write(blob_content) return filename, media_type except FileNotFoundError: raise ValueError(f"The file {blob_path} was not found.") except Exception as e: raise ValueError(f"An error occurred while processing the file: {e}") def process_vision_info(messages): """Processes vision inputs (images and videos) from messages.""" image_inputs = [] video_inputs = [] for message in messages: for content in message["content"]: if content["type"] == "image": image_inputs.append(load_image(content["image"])) elif content["type"] == "video": video_inputs.append(content["video"]) return image_inputs, video_inputs @spaces.GPU def model_inference(input_dict, history): text = input_dict["text"] files = input_dict["files"] # Process media files (images or videos) media_paths = [] media_types = [] for file in files: if file.endswith(tuple([i for i, f in image_extensions.items()])): media_type = "image" elif file.endswith(video_extensions): media_type = "video" else: try: file, media_type = identify_and_save_blob(file) except Exception as e: gr.Error(f"Unsupported media type: {e}") return media_paths.append(file) media_types.append(media_type) # Validate input if text == "" and not media_paths: gr.Error("Please input a query and optionally image(s) or video(s).") return if text == "" and media_paths: gr.Error("Please input a text query along with the image(s) or video(s).") return # Prepare messages for the model messages = [ { "role": "user", "content": [ *[{"type": media_type, media_type: media_path} for media_path, media_type in zip(media_paths, media_types)], {"type": "text", "text": text}, ], } ] # Apply chat template and process inputs prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # Process vision inputs (images and videos) image_inputs, video_inputs = process_vision_info(messages) # Ensure video_inputs is not empty if not video_inputs: video_inputs = None inputs = processor( text=[prompt], images=image_inputs if image_inputs else None, videos=video_inputs if video_inputs else None, return_tensors="pt", padding=True, ).to("cuda") # Set up streamer for real-time output streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024) # Start generation in a separate thread thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Stream the output buffer = "" yield "Thinking..." for new_text in streamer: buffer += new_text # Remove <|im_end|> or similar tokens from the output buffer = buffer.replace("<|im_end|>", "") time.sleep(0.01) yield buffer # Example inputs examples = [ [{"text": "Describe the video.", "files": ["examples/demo.mp4"]}], [{"text": "Extract JSON from the image", "files": ["example_images/document.jpg"]}], [{"text": "summarize the letter", "files": ["examples/1.png"]}], [{"text": "Describe the photo", "files": ["examples/3.png"]}], [{"text": "Extract as JSON table from the table", "files": ["examples/4.jpg"]}], [{"text": "Summarize the full image in detail", "files": ["examples/2.jpg"]}], [{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}], [{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}], [{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}], [{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}], [{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}], ] demo = gr.ChatInterface( fn=model_inference, description="# **Multimodal OCR**", examples=examples, textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True, cache_examples=False, ) demo.launch(debug=True, share=True)