File size: 11,744 Bytes
cff3d4f
 
 
 
 
 
 
 
 
6ee09b1
9810ea7
cff3d4f
 
 
41a2df3
cff3d4f
 
 
 
 
 
 
 
 
08d30fe
cff3d4f
 
 
 
96784fc
cff3d4f
9810ea7
41a2df3
3f5e573
cff3d4f
 
 
 
 
 
 
9810ea7
41a2df3
 
cff3d4f
 
 
 
 
 
6693a45
3af868a
41a2df3
 
 
784d340
 
7cda98b
41a2df3
 
 
 
 
 
 
 
 
5cf35b5
cff3d4f
 
 
 
 
 
 
 
 
 
9810ea7
cff3d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364cb51
cff3d4f
 
 
41a2df3
cff3d4f
 
 
 
2257031
 
cff3d4f
 
 
 
 
 
 
 
 
364cb51
a3d42ff
cff3d4f
 
 
 
 
 
 
41a2df3
3af868a
cff3d4f
41a2df3
cff3d4f
 
 
 
364cb51
41a2df3
 
 
 
 
 
 
 
 
cff3d4f
41a2df3
cff3d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a2df3
cff3d4f
0800c0d
 
 
 
 
 
 
cff3d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d42ff
cff3d4f
 
 
 
 
 
364cb51
41a2df3
cff3d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0800c0d
 
 
 
 
 
 
 
 
cff3d4f
 
 
 
 
a3d42ff
cff3d4f
 
 
 
 
 
41a2df3
cff3d4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3d42ff
cff3d4f
 
 
 
 
a2a8e37
41a2df3
 
 
 
 
5cf35b5
cff3d4f
 
 
effc5e7
 
 
 
 
cff3d4f
889740b
41a2df3
889740b
3af868a
01d03b6
 
784d340
 
 
 
889740b
cff3d4f
7d47057
cff3d4f
 
 
 
 
 
9810ea7
 
cff3d4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
import edge_tts

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image

# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load text-only model and tokenizer (Pocket Llama)
model_id = "prithivMLmods/Pocket-Llama2-3.2-3B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

# Load multimodal processor and model (Callisto OCR3)
MODEL_ID = "prithivMLmods/Callisto-OCR3-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

# Edge TTS voices mapping for new tags.
TTS_VOICE_MAP = {
    "@jennyneural": "en-US-JennyNeural",
    "@guyneural": "en-US-GuyNeural",
    "@palomaneural": "es-US-PalomaNeural",
    "@alonsoneural": "es-US-AlonsoNeural",
    "@madhurneural": "hi-IN-MadhurNeural"
}

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """
    Convert text to speech using Edge TTS and save as MP3.
    """
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    """
    Filter out any chat entries whose "content" is not a string.
    This helps prevent errors when concatenating previous messages.
    """
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

def downsample_video(video_path):
    """
    Downsamples the video to 10 evenly spaced frames.
    Each frame is returned as a PIL image along with its timestamp.
    """
    vidcap = cv2.VideoCapture(video_path)
    total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = vidcap.get(cv2.CAP_PROP_FPS)
    frames = []
    # Sample 10 evenly spaced frames.
    frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
    for i in frame_indices:
        vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
        success, image = vidcap.read()
        if success:
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)  # Convert BGR to RGB
            pil_image = Image.fromarray(image)
            timestamp = round(i / fps, 2)
            frames.append((pil_image, timestamp))
    vidcap.release()
    return frames

def progress_bar_html(label: str) -> str:
    """
    Returns an HTML snippet for a thin progress bar with a label.
    The progress bar is styled as a light cyan animated bar.
    """
    return f'''
<div style="display: flex; align-items: center;">
    <span style="margin-right: 10px; font-size: 14px;">{label}</span>
    <div style="width: 110px; height: 5px; background-color: #B0E0E6; border-radius: 2px; overflow: hidden;">
        <div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div>
    </div>
</div>
<style>
@keyframes loading {{
    0% {{ transform: translateX(-100%); }}
    100% {{ transform: translateX(100%); }}
}}
</style>
    '''

@spaces.GPU
def generate(input_dict: dict, chat_history: list[dict],
             max_new_tokens: int = 1024,
             temperature: float = 0.6,
             top_p: float = 0.9,
             top_k: int = 50,
             repetition_penalty: float = 1.2):
    """
    Generates chatbot responses with support for multimodal input, video processing,
    and Edge TTS when using the new tags @JennyNeural or @GuyNeural.
    Special command:
      - "@video-infer": triggers video processing using Callisto OCR3.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])
    lower_text = text.strip().lower()

    # Check for TTS tag in the prompt.
    tts_voice = None
    for tag, voice in TTS_VOICE_MAP.items():
        if lower_text.startswith(tag):
            tts_voice = voice
            text = text[len(tag):].strip()  # Remove the tag from the prompt.
            break

    # Branch for video processing with Callisto OCR3.
    if lower_text.startswith("@video-infer"):
        prompt = text[len("@video-infer"):].strip() if not tts_voice else text
        if files:
            # Assume the first file is a video.
            video_path = files[0]
            frames = downsample_video(video_path)
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
            # Append each frame with its timestamp.
            for frame in frames:
                image, timestamp = frame
                image_path = f"video_frame_{uuid.uuid4().hex}.png"
                image.save(image_path)
                messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
                messages[1]["content"].append({"type": "image", "url": image_path})
        else:
            messages = [
                {"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
                {"role": "user", "content": [{"type": "text", "text": prompt}]}
            ]
        # Enable truncation to avoid token/feature mismatch.
        inputs = processor.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True,
            return_dict=True,
            return_tensors="pt",
            truncation=True,
            max_length=MAX_INPUT_TOKEN_LENGTH
        ).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            **inputs,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "temperature": temperature,
            "top_p": top_p,
            "top_k": top_k,
            "repetition_penalty": repetition_penalty,
        }
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing video with Callisto OCR3")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
        return

    # Multimodal processing when files are provided.
    if files:
        if len(files) > 1:
            images = [load_image(image) for image in files]
        elif len(files) == 1:
            images = [load_image(files[0])]
        else:
            images = []
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        # Enable truncation explicitly here as well.
        inputs = processor(
            text=[prompt_full],
            images=images,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=MAX_INPUT_TOKEN_LENGTH
        ).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()
        buffer = ""
        yield progress_bar_html("Processing image with Callisto OCR3")
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        # Normal text conversation processing with Pocket Llama.
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()
        outputs = []
        yield progress_bar_html("Processing With Pocket Llama 3B")
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)
        final_response = "".join(outputs)
        yield final_response

        # If a TTS voice was specified, convert the final response to speech.
        if tts_voice:
            output_file = asyncio.run(text_to_speech(final_response, tts_voice))
            yield gr.Audio(output_file, autoplay=True)

# Create the Gradio ChatInterface with the custom CSS applied
demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        ["Write the code that converts temperatures between Celsius and Fahrenheit in short"],
        [{"text": "Create a short story based on the image.", "files": ["examples/1.jpg"]}],
        ["@JennyNeural Who was Nikola Tesla and what were his contributions?"],
        [{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
        [{"text": "@video-infer Describe the Ad", "files": ["examples/coca.mp4"]}],
        ["@GuyNeural Explain how rainbows are formed."],
        ["@PalomaNeural What is the water cycle?"],
        ["@AlonsoNeural Who was Pablo Picasso and why is he famous?"],
        ["@MadhurNeural What are the key principles of Ayurveda?"]
    ],
    cache_examples=False,
    description="# **Pocket Llama**",
    type="messages",
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    demo.queue(max_size=20).launch(share=True)