Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,744 Bytes
cff3d4f 6ee09b1 9810ea7 cff3d4f 41a2df3 cff3d4f 08d30fe cff3d4f 96784fc cff3d4f 9810ea7 41a2df3 3f5e573 cff3d4f 9810ea7 41a2df3 cff3d4f 6693a45 3af868a 41a2df3 784d340 7cda98b 41a2df3 5cf35b5 cff3d4f 9810ea7 cff3d4f 364cb51 cff3d4f 41a2df3 cff3d4f 2257031 cff3d4f 364cb51 a3d42ff cff3d4f 41a2df3 3af868a cff3d4f 41a2df3 cff3d4f 364cb51 41a2df3 cff3d4f 41a2df3 cff3d4f 41a2df3 cff3d4f 0800c0d cff3d4f a3d42ff cff3d4f 364cb51 41a2df3 cff3d4f 0800c0d cff3d4f a3d42ff cff3d4f 41a2df3 cff3d4f a3d42ff cff3d4f a2a8e37 41a2df3 5cf35b5 cff3d4f effc5e7 cff3d4f 889740b 41a2df3 889740b 3af868a 01d03b6 784d340 889740b cff3d4f 7d47057 cff3d4f 9810ea7 cff3d4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import os
import random
import uuid
import json
import time
import asyncio
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
import edge_tts
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
# Constants for text generation
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Load text-only model and tokenizer (Pocket Llama)
model_id = "prithivMLmods/Pocket-Llama2-3.2-3B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
# Load multimodal processor and model (Callisto OCR3)
MODEL_ID = "prithivMLmods/Callisto-OCR3-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
# Edge TTS voices mapping for new tags.
TTS_VOICE_MAP = {
"@jennyneural": "en-US-JennyNeural",
"@guyneural": "en-US-GuyNeural",
"@palomaneural": "es-US-PalomaNeural",
"@alonsoneural": "es-US-AlonsoNeural",
"@madhurneural": "hi-IN-MadhurNeural"
}
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""
Convert text to speech using Edge TTS and save as MP3.
"""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
"""
Filter out any chat entries whose "content" is not a string.
This helps prevent errors when concatenating previous messages.
"""
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is returned as a PIL image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a light cyan animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #B0E0E6; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
@spaces.GPU
def generate(input_dict: dict, chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2):
"""
Generates chatbot responses with support for multimodal input, video processing,
and Edge TTS when using the new tags @JennyNeural or @GuyNeural.
Special command:
- "@video-infer": triggers video processing using Callisto OCR3.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
lower_text = text.strip().lower()
# Check for TTS tag in the prompt.
tts_voice = None
for tag, voice in TTS_VOICE_MAP.items():
if lower_text.startswith(tag):
tts_voice = voice
text = text[len(tag):].strip() # Remove the tag from the prompt.
break
# Branch for video processing with Callisto OCR3.
if lower_text.startswith("@video-infer"):
prompt = text[len("@video-infer"):].strip() if not tts_voice else text
if files:
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt}]}
]
# Append each frame with its timestamp.
for frame in frames:
image, timestamp = frame
image_path = f"video_frame_{uuid.uuid4().hex}.png"
image.save(image_path)
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "url": image_path})
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt}]}
]
# Enable truncation to avoid token/feature mismatch.
inputs = processor.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_dict=True,
return_tensors="pt",
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Callisto OCR3")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
return
# Multimodal processing when files are provided.
if files:
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Enable truncation explicitly here as well.
inputs = processor(
text=[prompt_full],
images=images,
return_tensors="pt",
padding=True,
truncation=True,
max_length=MAX_INPUT_TOKEN_LENGTH
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing image with Callisto OCR3")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
# Normal text conversation processing with Pocket Llama.
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
yield progress_bar_html("Processing With Pocket Llama 3B")
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
# If a TTS voice was specified, convert the final response to speech.
if tts_voice:
output_file = asyncio.run(text_to_speech(final_response, tts_voice))
yield gr.Audio(output_file, autoplay=True)
# Create the Gradio ChatInterface with the custom CSS applied
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
["Write the code that converts temperatures between Celsius and Fahrenheit in short"],
[{"text": "Create a short story based on the image.", "files": ["examples/1.jpg"]}],
["@JennyNeural Who was Nikola Tesla and what were his contributions?"],
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}],
[{"text": "@video-infer Describe the Ad", "files": ["examples/coca.mp4"]}],
["@GuyNeural Explain how rainbows are formed."],
["@PalomaNeural What is the water cycle?"],
["@AlonsoNeural Who was Pablo Picasso and why is he famous?"],
["@MadhurNeural What are the key principles of Ayurveda?"]
],
cache_examples=False,
description="# **Pocket Llama**",
type="messages",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |