Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
import edge_tts | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
) | |
from transformers.image_utils import load_image | |
# Constants for text generation | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# Load text-only model and tokenizer (Pocket Llama) | |
model_id = "prithivMLmods/Pocket-Llama2-3.2-3B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
# Load multimodal processor and model (Callisto OCR3) | |
MODEL_ID = "prithivMLmods/Callisto-OCR3-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
# Edge TTS voices mapping for new tags. | |
TTS_VOICE_MAP = { | |
"@jennyneural": "en-US-JennyNeural", | |
"@guyneural": "en-US-GuyNeural", | |
"@palomaneural": "es-US-PalomaNeural", | |
"@alonsoneural": "es-US-AlonsoNeural", | |
"@madhurneural": "hi-IN-MadhurNeural" | |
} | |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
""" | |
Convert text to speech using Edge TTS and save as MP3. | |
""" | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
def clean_chat_history(chat_history): | |
""" | |
Filter out any chat entries whose "content" is not a string. | |
This helps prevent errors when concatenating previous messages. | |
""" | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
def downsample_video(video_path): | |
""" | |
Downsamples the video to 10 evenly spaced frames. | |
Each frame is returned as a PIL image along with its timestamp. | |
""" | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
# Sample 10 evenly spaced frames. | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Convert BGR to RGB | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
def progress_bar_html(label: str) -> str: | |
""" | |
Returns an HTML snippet for a thin progress bar with a label. | |
The progress bar is styled as a light cyan animated bar. | |
""" | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #B0E0E6; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #00FFFF; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
def generate(input_dict: dict, chat_history: list[dict], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2): | |
""" | |
Generates chatbot responses with support for multimodal input, video processing, | |
and Edge TTS when using the new tags @JennyNeural or @GuyNeural. | |
Special command: | |
- "@video-infer": triggers video processing using Callisto OCR3. | |
""" | |
text = input_dict["text"] | |
files = input_dict.get("files", []) | |
lower_text = text.strip().lower() | |
# Check for TTS tag in the prompt. | |
tts_voice = None | |
for tag, voice in TTS_VOICE_MAP.items(): | |
if lower_text.startswith(tag): | |
tts_voice = voice | |
text = text[len(tag):].strip() # Remove the tag from the prompt. | |
break | |
# Branch for video processing with Callisto OCR3. | |
if lower_text.startswith("@video-infer"): | |
prompt = text[len("@video-infer"):].strip() if not tts_voice else text | |
if files: | |
# Assume the first file is a video. | |
video_path = files[0] | |
frames = downsample_video(video_path) | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": prompt}]} | |
] | |
# Append each frame with its timestamp. | |
for frame in frames: | |
image, timestamp = frame | |
image_path = f"video_frame_{uuid.uuid4().hex}.png" | |
image.save(image_path) | |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[1]["content"].append({"type": "image", "url": image_path}) | |
else: | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": prompt}]} | |
] | |
# Enable truncation to avoid token/feature mismatch. | |
inputs = processor.apply_chat_template( | |
messages, | |
tokenize=True, | |
add_generation_prompt=True, | |
return_dict=True, | |
return_tensors="pt", | |
truncation=True, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing video with Callisto OCR3") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
return | |
# Multimodal processing when files are provided. | |
if files: | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
# Enable truncation explicitly here as well. | |
inputs = processor( | |
text=[prompt_full], | |
images=images, | |
return_tensors="pt", | |
padding=True, | |
truncation=True, | |
max_length=MAX_INPUT_TOKEN_LENGTH | |
).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing image with Callisto OCR3") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
else: | |
# Normal text conversation processing with Pocket Llama. | |
conversation = clean_chat_history(chat_history) | |
conversation.append({"role": "user", "content": text}) | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
yield progress_bar_html("Processing With Pocket Llama 3B") | |
for new_text in streamer: | |
outputs.append(new_text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
yield final_response | |
# If a TTS voice was specified, convert the final response to speech. | |
if tts_voice: | |
output_file = asyncio.run(text_to_speech(final_response, tts_voice)) | |
yield gr.Audio(output_file, autoplay=True) | |
# Create the Gradio ChatInterface with the custom CSS applied | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
examples=[ | |
["Write the code that converts temperatures between Celsius and Fahrenheit in short"], | |
[{"text": "Create a short story based on the image.", "files": ["examples/1.jpg"]}], | |
["@JennyNeural Who was Nikola Tesla and what were his contributions?"], | |
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}], | |
[{"text": "@video-infer Describe the Ad", "files": ["examples/coca.mp4"]}], | |
["@GuyNeural Explain how rainbows are formed."], | |
["@PalomaNeural What is the water cycle?"], | |
["@AlonsoNeural Who was Pablo Picasso and why is he famous?"], | |
["@MadhurNeural What are the key principles of Ayurveda?"] | |
], | |
cache_examples=False, | |
description="# **Pocket Llama**", | |
type="messages", | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) |