Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -7,28 +7,6 @@ from gym_workout_classification import workout_classification
|
|
7 |
from augmented_waste_classifier import waste_classification
|
8 |
from age_classification import age_classification
|
9 |
|
10 |
-
# Functions to update the model state when a button is clicked.
|
11 |
-
def select_gender():
|
12 |
-
return "gender"
|
13 |
-
|
14 |
-
def select_emotion():
|
15 |
-
return "emotion"
|
16 |
-
|
17 |
-
def select_dog_breed():
|
18 |
-
return "dog breed"
|
19 |
-
|
20 |
-
def select_deepfake():
|
21 |
-
return "deepfake"
|
22 |
-
|
23 |
-
def select_gym_workout():
|
24 |
-
return "gym workout"
|
25 |
-
|
26 |
-
def select_waste():
|
27 |
-
return "waste"
|
28 |
-
|
29 |
-
def select_age():
|
30 |
-
return "age"
|
31 |
-
|
32 |
# Main classification function that calls the appropriate model based on selection.
|
33 |
def classify(image, model_name):
|
34 |
if model_name == "gender":
|
@@ -48,44 +26,79 @@ def classify(image, model_name):
|
|
48 |
else:
|
49 |
return {"Error": "No model selected"}
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
with gr.Blocks() as demo:
|
52 |
# Sidebar with title and model selection buttons.
|
53 |
with gr.Sidebar():
|
54 |
gr.Markdown("# SigLIP2 224")
|
55 |
with gr.Row():
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
# State to hold the current model choice.
|
65 |
selected_model = gr.State("age")
|
66 |
|
67 |
-
# Set model state when buttons are clicked.
|
68 |
-
gender_btn.click(fn=select_gender, inputs=[], outputs=selected_model)
|
69 |
-
emotion_btn.click(fn=select_emotion, inputs=[], outputs=selected_model)
|
70 |
-
dog_breed_btn.click(fn=select_dog_breed, inputs=[], outputs=selected_model)
|
71 |
-
deepfake_btn.click(fn=select_deepfake, inputs=[], outputs=selected_model)
|
72 |
-
gym_workout_btn.click(fn=select_gym_workout, inputs=[], outputs=selected_model)
|
73 |
-
waste_btn.click(fn=select_waste, inputs=[], outputs=selected_model)
|
74 |
-
age_btn.click(fn=select_age, inputs=[], outputs=selected_model)
|
75 |
-
|
76 |
gr.Markdown("### Current Model:")
|
77 |
model_display = gr.Textbox(value="age", interactive=False)
|
78 |
# Update display when state changes.
|
79 |
selected_model.change(lambda m: m, selected_model, model_display)
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Main interface: image input, analyze button, and prediction output.
|
82 |
with gr.Column():
|
83 |
image_input = gr.Image(type="numpy", label="Upload Image")
|
84 |
analyze_btn = gr.Button("Classify / Predict")
|
85 |
-
|
86 |
-
output_label = gr.Label(label="Prediction Scores")
|
87 |
-
|
88 |
# When the "Analyze" button is clicked, use the selected model to classify the image.
|
89 |
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)
|
90 |
|
91 |
-
demo.launch()
|
|
|
7 |
from augmented_waste_classifier import waste_classification
|
8 |
from age_classification import age_classification
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Main classification function that calls the appropriate model based on selection.
|
11 |
def classify(image, model_name):
|
12 |
if model_name == "gender":
|
|
|
26 |
else:
|
27 |
return {"Error": "No model selected"}
|
28 |
|
29 |
+
# Function to update the selected model and button styles.
|
30 |
+
def select_model(model_name):
|
31 |
+
# Set each button's variant to "primary" if selected, otherwise "secondary"
|
32 |
+
gender_variant = "primary" if model_name == "gender" else "secondary"
|
33 |
+
emotion_variant = "primary" if model_name == "emotion" else "secondary"
|
34 |
+
dog_breed_variant = "primary" if model_name == "dog breed" else "secondary"
|
35 |
+
deepfake_variant = "primary" if model_name == "deepfake" else "secondary"
|
36 |
+
gym_workout_variant = "primary" if model_name == "gym workout" else "secondary"
|
37 |
+
waste_variant = "primary" if model_name == "waste" else "secondary"
|
38 |
+
age_variant = "primary" if model_name == "age" else "secondary"
|
39 |
+
# Return new state and update objects for each button in the specified order.
|
40 |
+
return (
|
41 |
+
model_name,
|
42 |
+
gr.update(variant=gender_variant),
|
43 |
+
gr.update(variant=emotion_variant),
|
44 |
+
gr.update(variant=dog_breed_variant),
|
45 |
+
gr.update(variant=deepfake_variant),
|
46 |
+
gr.update(variant=gym_workout_variant),
|
47 |
+
gr.update(variant=waste_variant),
|
48 |
+
gr.update(variant=age_variant)
|
49 |
+
)
|
50 |
+
|
51 |
with gr.Blocks() as demo:
|
52 |
# Sidebar with title and model selection buttons.
|
53 |
with gr.Sidebar():
|
54 |
gr.Markdown("# SigLIP2 224")
|
55 |
with gr.Row():
|
56 |
+
# Initialize buttons with variants. Default is "age" set to primary.
|
57 |
+
age_btn = gr.Button("Age Classification", variant="primary")
|
58 |
+
gender_btn = gr.Button("Gender Classification", variant="secondary")
|
59 |
+
emotion_btn = gr.Button("Emotion Classification", variant="secondary")
|
60 |
+
dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary")
|
61 |
+
deepfake_btn = gr.Button("Deepfake vs Real", variant="secondary")
|
62 |
+
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
|
63 |
+
waste_btn = gr.Button("Waste Classification", variant="secondary")
|
64 |
|
65 |
# State to hold the current model choice.
|
66 |
selected_model = gr.State("age")
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
gr.Markdown("### Current Model:")
|
69 |
model_display = gr.Textbox(value="age", interactive=False)
|
70 |
# Update display when state changes.
|
71 |
selected_model.change(lambda m: m, selected_model, model_display)
|
72 |
|
73 |
+
# Set up click events for each button, updating state and button variants.
|
74 |
+
gender_btn.click(fn=lambda: select_model("gender"),
|
75 |
+
inputs=[],
|
76 |
+
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
77 |
+
emotion_btn.click(fn=lambda: select_model("emotion"),
|
78 |
+
inputs=[],
|
79 |
+
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
80 |
+
dog_breed_btn.click(fn=lambda: select_model("dog breed"),
|
81 |
+
inputs=[],
|
82 |
+
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
83 |
+
deepfake_btn.click(fn=lambda: select_model("deepfake"),
|
84 |
+
inputs=[],
|
85 |
+
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
86 |
+
gym_workout_btn.click(fn=lambda: select_model("gym workout"),
|
87 |
+
inputs=[],
|
88 |
+
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
89 |
+
waste_btn.click(fn=lambda: select_model("waste"),
|
90 |
+
inputs=[],
|
91 |
+
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
92 |
+
age_btn.click(fn=lambda: select_model("age"),
|
93 |
+
inputs=[],
|
94 |
+
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
95 |
+
|
96 |
# Main interface: image input, analyze button, and prediction output.
|
97 |
with gr.Column():
|
98 |
image_input = gr.Image(type="numpy", label="Upload Image")
|
99 |
analyze_btn = gr.Button("Classify / Predict")
|
100 |
+
output_label = gr.Label(label="Prediction Scores")
|
|
|
|
|
101 |
# When the "Analyze" button is clicked, use the selected model to classify the image.
|
102 |
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)
|
103 |
|
104 |
+
demo.launch()
|