prithivMLmods's picture
Update app.py
ab0c591 verified
raw
history blame
8.08 kB
import gradio as gr
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer,
AutoModelForCausalLM,
AutoTokenizer,
)
from transformers.image_utils import load_image
from threading import Thread
import time
import torch
import spaces
import cv2
import numpy as np
from PIL import Image
# -----------------------
# Progress Bar Helper
# -----------------------
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# -----------------------
# Video Processing Helper
# -----------------------
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# -----------------------
# Qwen2.5-VL Model (Multimodal)
# -----------------------
MODEL_ID_VL = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
vl_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_VL,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# -----------------------
# Text Generation Setup (DeepHermes)
# -----------------------
TG_MODEL_ID = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
tg_tokenizer = AutoTokenizer.from_pretrained(TG_MODEL_ID)
tg_model = AutoModelForCausalLM.from_pretrained(
TG_MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16,
)
tg_model.eval()
# -----------------------
# Main Inference Function
# -----------------------
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict["files"]
# Video inference branch
if text.strip().lower().startswith("@video-infer"):
text = text[len("@video-infer"):].strip()
if not files:
yield gr.Error("Please upload a video file along with your @video-infer query.")
return
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
yield gr.Error("Could not process video.")
return
# Build messages starting with the text prompt and then add each frame with its timestamp.
messages = [
{
"role": "user",
"content": [{"type": "text", "text": text}]
}
]
for image, timestamp in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[0]["content"].append({"type": "image", "image": image})
# Collect images from the frames.
video_images = [image for image, _ in frames]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Multimodal branch if images are provided (non-video)
if files:
# If more than one file is provided, load them as images.
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
if text == "":
yield gr.Error("Please input a text query along with the image(s).")
return
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Text-only branch using DeepHermes text generation.
if text.strip() == "":
yield gr.Error("Please input a query.")
return
input_ids = tg_tokenizer(text, return_tensors="pt").to(tg_model.device)
streamer = TextIteratorStreamer(tg_tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": 2048,
"do_sample": True,
"top_p": 0.9,
"top_k": 50,
"temperature": 0.6,
"repetition_penalty": 1.2,
}
thread = Thread(target=tg_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing text with DeepHermes Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
# -----------------------
# Gradio Chat Interface
# -----------------------
examples = [
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
[{"text": "Tell me a story about a brave knight."}],
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**",
examples=examples,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
if __name__ == "__main__":
demo.launch(debug=True)