prithivMLmods's picture
Update app.py
7481bfe verified
raw
history blame
7.88 kB
import gradio as gr
import cv2
import numpy as np
import time
import torch
import spaces
from threading import Thread
from PIL import Image
from transformers import (
AutoProcessor,
Qwen2_5_VLForConditionalGeneration,
TextIteratorStreamer,
AutoTokenizer,
AutoModelForCausalLM,
)
from transformers.image_utils import load_image
# Progress Bar Helper
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #9370DB; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #4B0082; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# Video Downsampling Helper
def downsample_video(video_path):
"""
Downsamples the video to 10 evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# Qwen2.5-VL Setup (for image and video understanding)
MODEL_ID_VL = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
vl_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID_VL,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda").eval()
# Text Generation Setup (Ganymede)
TG_MODEL_ID = "prithivMLmods/Ganymede-Llama-3.3-3B-Preview"
tg_tokenizer = AutoTokenizer.from_pretrained(TG_MODEL_ID)
tg_model = AutoModelForCausalLM.from_pretrained(
TG_MODEL_ID,
device_map="auto",
torch_dtype=torch.bfloat16,
)
tg_model.eval()
@spaces.GPU
def model_inference(input_dict, history):
text = input_dict["text"]
files = input_dict.get("files", [])
# Video inference branch using a tag @video-infer
if text.strip().lower().startswith("@video-infer"):
# Remove the tag from the query.
text = text[len("@video-infer"):].strip()
if not files:
gr.Error("Please upload a video file along with your @video-infer query.")
return
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
if not frames:
gr.Error("Could not process video.")
return
# Build messages: start with the text prompt.
messages = [
{
"role": "user",
"content": [{"type": "text", "text": text}]
}
]
# Append each frame with a timestamp label.
for image, timestamp in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[0]["content"].append({"type": "image", "image": image})
# Collect only the images from the frames.
video_images = [image for image, _ in frames]
# Prepare the prompt.
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=video_images,
return_tensors="pt",
padding=True,
).to("cuda")
# Set up streaming generation.
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing video with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# If files are provided (e.g. images), use the VL model.
if files:
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
messages = [
{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
],
}
]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(
text=[prompt],
images=images,
return_tensors="pt",
padding=True,
).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2.5VL Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
if text and not files:
# Prepare input for text generation.
input_ids = tg_tokenizer.encode(text, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(tg_tokenizer, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": 1024,
"do_sample": True,
"temperature": 0.7,
"top_p": 0.9,
}
thread = Thread(target=tg_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing text with Ganymede Model")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Fallback error in case neither text nor proper file input is provided.
gr.Error("Please input a query (and optionally images or video for multimodal processing).")
# Gradio Chat Interface Setup
examples = [
[{"text": "Explain the image and highlight the key points.", "files": ["example_images/campeones.jpg"]}],
[{"text": "Tell me a story about a brave knight."}],
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
]
demo = gr.ChatInterface(
fn=model_inference,
description="# **Qwen2.5-VL-7B-Instruct `@video-infer for video understanding`**",
examples=examples,
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
stop_btn="Stop Generation",
multimodal=True,
cache_examples=False,
)
if __name__ == "__main__":
demo.launch(debug=True)