Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,14 +5,14 @@ from threading import Thread
|
|
5 |
import time
|
6 |
import torch
|
7 |
import spaces
|
|
|
|
|
|
|
8 |
|
9 |
-
# -----------------------
|
10 |
-
# Progress Bar Helper
|
11 |
-
# -----------------------
|
12 |
def progress_bar_html(label: str) -> str:
|
13 |
"""
|
14 |
Returns an HTML snippet for a thin progress bar with a label.
|
15 |
-
The progress bar is styled as a dark
|
16 |
"""
|
17 |
return f'''
|
18 |
<div style="display: flex; align-items: center;">
|
@@ -29,7 +29,32 @@ def progress_bar_html(label: str) -> str:
|
|
29 |
</style>
|
30 |
'''
|
31 |
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
34 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
35 |
MODEL_ID,
|
@@ -42,7 +67,52 @@ def model_inference(input_dict, history):
|
|
42 |
text = input_dict["text"]
|
43 |
files = input_dict["files"]
|
44 |
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
if len(files) > 1:
|
47 |
images = [load_image(image) for image in files]
|
48 |
elif len(files) == 1:
|
@@ -50,7 +120,6 @@ def model_inference(input_dict, history):
|
|
50 |
else:
|
51 |
images = []
|
52 |
|
53 |
-
# Validate input
|
54 |
if text == "" and not images:
|
55 |
gr.Error("Please input a query and optionally image(s).")
|
56 |
return
|
@@ -58,7 +127,6 @@ def model_inference(input_dict, history):
|
|
58 |
gr.Error("Please input a text query along with the image(s).")
|
59 |
return
|
60 |
|
61 |
-
# Prepare messages for the model
|
62 |
messages = [
|
63 |
{
|
64 |
"role": "user",
|
@@ -68,8 +136,6 @@ def model_inference(input_dict, history):
|
|
68 |
],
|
69 |
}
|
70 |
]
|
71 |
-
|
72 |
-
# Apply chat template and process inputs
|
73 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
74 |
inputs = processor(
|
75 |
text=[prompt],
|
@@ -77,16 +143,10 @@ def model_inference(input_dict, history):
|
|
77 |
return_tensors="pt",
|
78 |
padding=True,
|
79 |
).to("cuda")
|
80 |
-
|
81 |
-
# Set up streamer for real-time output
|
82 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
83 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
84 |
-
|
85 |
-
# Start generation in a separate thread
|
86 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
87 |
thread.start()
|
88 |
-
|
89 |
-
# Stream the output
|
90 |
buffer = ""
|
91 |
yield progress_bar_html("Processing with Qwen2.5VL Model")
|
92 |
for new_text in streamer:
|
@@ -94,21 +154,19 @@ def model_inference(input_dict, history):
|
|
94 |
time.sleep(0.01)
|
95 |
yield buffer
|
96 |
|
97 |
-
|
98 |
-
# Example inputs
|
99 |
examples = [
|
100 |
[{"text": "Describe the document?", "files": ["example_images/document.jpg"]}],
|
101 |
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
|
102 |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
103 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
104 |
-
|
105 |
]
|
106 |
|
107 |
demo = gr.ChatInterface(
|
108 |
fn=model_inference,
|
109 |
description="# **Qwen2.5-VL-7B-Instruct**",
|
110 |
examples=examples,
|
111 |
-
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
112 |
stop_btn="Stop Generation",
|
113 |
multimodal=True,
|
114 |
cache_examples=False,
|
|
|
5 |
import time
|
6 |
import torch
|
7 |
import spaces
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
from PIL import Image
|
11 |
|
|
|
|
|
|
|
12 |
def progress_bar_html(label: str) -> str:
|
13 |
"""
|
14 |
Returns an HTML snippet for a thin progress bar with a label.
|
15 |
+
The progress bar is styled as a dark animated bar.
|
16 |
"""
|
17 |
return f'''
|
18 |
<div style="display: flex; align-items: center;">
|
|
|
29 |
</style>
|
30 |
'''
|
31 |
|
32 |
+
def downsample_video(video_path):
|
33 |
+
"""
|
34 |
+
Downsamples the video to 10 evenly spaced frames.
|
35 |
+
Each frame is converted to a PIL Image along with its timestamp.
|
36 |
+
"""
|
37 |
+
vidcap = cv2.VideoCapture(video_path)
|
38 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
39 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
40 |
+
frames = []
|
41 |
+
if total_frames <= 0 or fps <= 0:
|
42 |
+
vidcap.release()
|
43 |
+
return frames
|
44 |
+
# Sample 10 evenly spaced frames.
|
45 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
46 |
+
for i in frame_indices:
|
47 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
48 |
+
success, image = vidcap.read()
|
49 |
+
if success:
|
50 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
51 |
+
pil_image = Image.fromarray(image)
|
52 |
+
timestamp = round(i / fps, 2)
|
53 |
+
frames.append((pil_image, timestamp))
|
54 |
+
vidcap.release()
|
55 |
+
return frames
|
56 |
+
|
57 |
+
MODEL_ID = "Qwen/Qwen2.5-VL-3B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-7B-Instruct"
|
58 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
59 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
60 |
MODEL_ID,
|
|
|
67 |
text = input_dict["text"]
|
68 |
files = input_dict["files"]
|
69 |
|
70 |
+
if text.strip().lower().startswith("@video-infer"):
|
71 |
+
# Remove the tag from the query.
|
72 |
+
text = text[len("@video-infer"):].strip()
|
73 |
+
if not files:
|
74 |
+
gr.Error("Please upload a video file along with your @video-infer query.")
|
75 |
+
return
|
76 |
+
# Assume the first file is a video.
|
77 |
+
video_path = files[0]
|
78 |
+
frames = downsample_video(video_path)
|
79 |
+
if not frames:
|
80 |
+
gr.Error("Could not process video.")
|
81 |
+
return
|
82 |
+
# Build messages: start with the text prompt.
|
83 |
+
messages = [
|
84 |
+
{
|
85 |
+
"role": "user",
|
86 |
+
"content": [{"type": "text", "text": text}]
|
87 |
+
}
|
88 |
+
]
|
89 |
+
# Append each frame with a timestamp label.
|
90 |
+
for image, timestamp in frames:
|
91 |
+
messages[0]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
92 |
+
messages[0]["content"].append({"type": "image", "image": image})
|
93 |
+
# Collect only the images from the frames.
|
94 |
+
video_images = [image for image, _ in frames]
|
95 |
+
# Prepare the prompt.
|
96 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
97 |
+
inputs = processor(
|
98 |
+
text=[prompt],
|
99 |
+
images=video_images,
|
100 |
+
return_tensors="pt",
|
101 |
+
padding=True,
|
102 |
+
).to("cuda")
|
103 |
+
# Set up streaming generation.
|
104 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
105 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
106 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
107 |
+
thread.start()
|
108 |
+
buffer = ""
|
109 |
+
yield progress_bar_html("Processing video with Qwen2.5VL Model")
|
110 |
+
for new_text in streamer:
|
111 |
+
buffer += new_text
|
112 |
+
time.sleep(0.01)
|
113 |
+
yield buffer
|
114 |
+
return
|
115 |
+
|
116 |
if len(files) > 1:
|
117 |
images = [load_image(image) for image in files]
|
118 |
elif len(files) == 1:
|
|
|
120 |
else:
|
121 |
images = []
|
122 |
|
|
|
123 |
if text == "" and not images:
|
124 |
gr.Error("Please input a query and optionally image(s).")
|
125 |
return
|
|
|
127 |
gr.Error("Please input a text query along with the image(s).")
|
128 |
return
|
129 |
|
|
|
130 |
messages = [
|
131 |
{
|
132 |
"role": "user",
|
|
|
136 |
],
|
137 |
}
|
138 |
]
|
|
|
|
|
139 |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
140 |
inputs = processor(
|
141 |
text=[prompt],
|
|
|
143 |
return_tensors="pt",
|
144 |
padding=True,
|
145 |
).to("cuda")
|
|
|
|
|
146 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
147 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
|
|
|
|
148 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
149 |
thread.start()
|
|
|
|
|
150 |
buffer = ""
|
151 |
yield progress_bar_html("Processing with Qwen2.5VL Model")
|
152 |
for new_text in streamer:
|
|
|
154 |
time.sleep(0.01)
|
155 |
yield buffer
|
156 |
|
|
|
|
|
157 |
examples = [
|
158 |
[{"text": "Describe the document?", "files": ["example_images/document.jpg"]}],
|
159 |
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
|
160 |
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
|
161 |
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
|
162 |
+
[{"text": "@video-infer Explain the content of the video.", "files": ["example_videos/sample_video.mp4"]}],
|
163 |
]
|
164 |
|
165 |
demo = gr.ChatInterface(
|
166 |
fn=model_inference,
|
167 |
description="# **Qwen2.5-VL-7B-Instruct**",
|
168 |
examples=examples,
|
169 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
|
170 |
stop_btn="Stop Generation",
|
171 |
multimodal=True,
|
172 |
cache_examples=False,
|