Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
from threading import Thread
|
5 |
import time
|
6 |
import torch
|
7 |
import spaces
|
8 |
-
import
|
9 |
-
import numpy as np
|
10 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
12 |
def progress_bar_html(label: str) -> str:
|
13 |
"""
|
14 |
Returns an HTML snippet for a thin progress bar with a label.
|
@@ -29,6 +36,7 @@ def progress_bar_html(label: str) -> str:
|
|
29 |
</style>
|
30 |
'''
|
31 |
|
|
|
32 |
def downsample_video(video_path):
|
33 |
"""
|
34 |
Downsamples the video to 10 evenly spaced frames.
|
@@ -54,19 +62,31 @@ def downsample_video(video_path):
|
|
54 |
vidcap.release()
|
55 |
return frames
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
61 |
trust_remote_code=True,
|
62 |
torch_dtype=torch.bfloat16
|
63 |
).to("cuda").eval()
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
@spaces.GPU
|
66 |
def model_inference(input_dict, history):
|
67 |
text = input_dict["text"]
|
68 |
-
files = input_dict
|
69 |
|
|
|
70 |
if text.strip().lower().startswith("@video-infer"):
|
71 |
# Remove the tag from the query.
|
72 |
text = text[len("@video-infer"):].strip()
|
@@ -103,7 +123,7 @@ def model_inference(input_dict, history):
|
|
103 |
# Set up streaming generation.
|
104 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
105 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
106 |
-
thread = Thread(target=
|
107 |
thread.start()
|
108 |
buffer = ""
|
109 |
yield progress_bar_html("Processing video with Qwen2.5VL Model")
|
@@ -113,49 +133,69 @@ def model_inference(input_dict, history):
|
|
113 |
yield buffer
|
114 |
return
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
return
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
|
|
|
|
|
|
137 |
}
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
text
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
buffer = ""
|
151 |
-
yield progress_bar_html("Processing with Qwen2.5VL Model")
|
152 |
-
for new_text in streamer:
|
153 |
-
buffer += new_text
|
154 |
-
time.sleep(0.01)
|
155 |
-
yield buffer
|
156 |
|
|
|
157 |
examples = [
|
158 |
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
|
|
|
159 |
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
|
160 |
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
|
161 |
[{"text": "@video-infer Explain the content of the video.", "files": ["example_images/sky.mp4"]}],
|
@@ -172,4 +212,5 @@ demo = gr.ChatInterface(
|
|
172 |
cache_examples=False,
|
173 |
)
|
174 |
|
175 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
|
|
4 |
import time
|
5 |
import torch
|
6 |
import spaces
|
7 |
+
from threading import Thread
|
|
|
8 |
from PIL import Image
|
9 |
+
from transformers import (
|
10 |
+
AutoProcessor,
|
11 |
+
Qwen2_5_VLForConditionalGeneration,
|
12 |
+
TextIteratorStreamer,
|
13 |
+
AutoTokenizer,
|
14 |
+
AutoModelForCausalLM,
|
15 |
+
)
|
16 |
+
from transformers.image_utils import load_image
|
17 |
|
18 |
+
# Progress Bar Helper
|
19 |
def progress_bar_html(label: str) -> str:
|
20 |
"""
|
21 |
Returns an HTML snippet for a thin progress bar with a label.
|
|
|
36 |
</style>
|
37 |
'''
|
38 |
|
39 |
+
# Video Downsampling Helper
|
40 |
def downsample_video(video_path):
|
41 |
"""
|
42 |
Downsamples the video to 10 evenly spaced frames.
|
|
|
62 |
vidcap.release()
|
63 |
return frames
|
64 |
|
65 |
+
# Qwen2.5-VL Setup (for image and video understanding)
|
66 |
+
MODEL_ID_VL = "Qwen/Qwen2.5-VL-7B-Instruct" # Alternatively: "Qwen/Qwen2.5-VL-3B-Instruct"
|
67 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
|
68 |
+
vl_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
69 |
+
MODEL_ID_VL,
|
70 |
trust_remote_code=True,
|
71 |
torch_dtype=torch.bfloat16
|
72 |
).to("cuda").eval()
|
73 |
|
74 |
+
# Text Generation Setup (Ganymede)
|
75 |
+
TG_MODEL_ID = "prithivMLmods/Ganymede-Llama-3.3-3B-Preview"
|
76 |
+
tg_tokenizer = AutoTokenizer.from_pretrained(TG_MODEL_ID)
|
77 |
+
tg_model = AutoModelForCausalLM.from_pretrained(
|
78 |
+
TG_MODEL_ID,
|
79 |
+
device_map="auto",
|
80 |
+
torch_dtype=torch.bfloat16,
|
81 |
+
)
|
82 |
+
tg_model.eval()
|
83 |
+
|
84 |
@spaces.GPU
|
85 |
def model_inference(input_dict, history):
|
86 |
text = input_dict["text"]
|
87 |
+
files = input_dict.get("files", [])
|
88 |
|
89 |
+
# Video inference branch using a tag @video-infer
|
90 |
if text.strip().lower().startswith("@video-infer"):
|
91 |
# Remove the tag from the query.
|
92 |
text = text[len("@video-infer"):].strip()
|
|
|
123 |
# Set up streaming generation.
|
124 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
125 |
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
126 |
+
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
|
127 |
thread.start()
|
128 |
buffer = ""
|
129 |
yield progress_bar_html("Processing video with Qwen2.5VL Model")
|
|
|
133 |
yield buffer
|
134 |
return
|
135 |
|
136 |
+
# If files are provided (e.g. images), use the VL model.
|
137 |
+
if files:
|
138 |
+
if len(files) > 1:
|
139 |
+
images = [load_image(image) for image in files]
|
140 |
+
elif len(files) == 1:
|
141 |
+
images = [load_image(files[0])]
|
142 |
+
messages = [
|
143 |
+
{
|
144 |
+
"role": "user",
|
145 |
+
"content": [
|
146 |
+
*[{"type": "image", "image": image} for image in images],
|
147 |
+
{"type": "text", "text": text},
|
148 |
+
],
|
149 |
+
}
|
150 |
+
]
|
151 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
152 |
+
inputs = processor(
|
153 |
+
text=[prompt],
|
154 |
+
images=images,
|
155 |
+
return_tensors="pt",
|
156 |
+
padding=True,
|
157 |
+
).to("cuda")
|
158 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
159 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
160 |
+
thread = Thread(target=vl_model.generate, kwargs=generation_kwargs)
|
161 |
+
thread.start()
|
162 |
+
buffer = ""
|
163 |
+
yield progress_bar_html("Processing with Qwen2.5VL Model")
|
164 |
+
for new_text in streamer:
|
165 |
+
buffer += new_text
|
166 |
+
time.sleep(0.01)
|
167 |
+
yield buffer
|
168 |
return
|
169 |
|
170 |
+
if text and not files:
|
171 |
+
# Prepare input for text generation.
|
172 |
+
input_ids = tg_tokenizer.encode(text, return_tensors="pt").to("cuda")
|
173 |
+
streamer = TextIteratorStreamer(tg_tokenizer, skip_prompt=True, skip_special_tokens=True)
|
174 |
+
generation_kwargs = {
|
175 |
+
"input_ids": input_ids,
|
176 |
+
"streamer": streamer,
|
177 |
+
"max_new_tokens": 1024,
|
178 |
+
"do_sample": True,
|
179 |
+
"temperature": 0.7,
|
180 |
+
"top_p": 0.9,
|
181 |
}
|
182 |
+
thread = Thread(target=tg_model.generate, kwargs=generation_kwargs)
|
183 |
+
thread.start()
|
184 |
+
buffer = ""
|
185 |
+
yield progress_bar_html("Processing text with Ganymede Model")
|
186 |
+
for new_text in streamer:
|
187 |
+
buffer += new_text
|
188 |
+
time.sleep(0.01)
|
189 |
+
yield buffer
|
190 |
+
return
|
191 |
+
|
192 |
+
# Fallback error in case neither text nor proper file input is provided.
|
193 |
+
gr.Error("Please input a query (and optionally images or video for multimodal processing).")
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
+
# Gradio Chat Interface Setup
|
196 |
examples = [
|
197 |
[{"text": "Describe the Image?", "files": ["example_images/document.jpg"]}],
|
198 |
+
[{"text": "Tell me a story about a brave knight."}],
|
199 |
[{"text": "@video-infer Explain the content of the Advertisement", "files": ["example_images/videoplayback.mp4"]}],
|
200 |
[{"text": "@video-infer Explain the content of the video in detail", "files": ["example_images/breakfast.mp4"]}],
|
201 |
[{"text": "@video-infer Explain the content of the video.", "files": ["example_images/sky.mp4"]}],
|
|
|
212 |
cache_examples=False,
|
213 |
)
|
214 |
|
215 |
+
if __name__ == "__main__":
|
216 |
+
demo.launch(debug=True)
|