import json import gradio as gr import numpy as np from PIL import Image import spaces import torch from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler import os import uuid import random # Description for the Gradio interface DESCRIPTIONx = """## INSTANT WALLPAPER """ # CSS for styling the Gradio interface css = ''' .gradio-container{max-width: 575px !important} h1{text-align:center} footer { visibility: hidden } ''' # Example prompts for the user to try examples = [ "Illustration of A starry night camp in the mountains. Low-angle view, Minimal background, Geometric shapes theme, Pottery, Split-complementary colors, Bicolored light, UHD", "Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic oil --ar 2:3 --q 2 --s 750 --v 5 --ar 2:3 --q 2 --s 750 --v 5" ] # Environment variables and defaults for configuration MODEL_ID = os.getenv("MODEL_USED") #SG161222/RealVisXL_V4.0 / SG161222/Realistic_Vision_V5.1_noVAE / SG161222/RealVisXL_V4.0_Lightning (1/3) MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Setting the device to GPU if available, otherwise CPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Loading the Stable Diffusion model pipe = StableDiffusionXLPipeline.from_pretrained( MODEL_ID, torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, use_safetensors=True, add_watermarker=False, ).to(device) # Configuring the scheduler for the model pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # Compiling the model for performance improvement if enabled if USE_TORCH_COMPILE: pipe.compile() # Enabling CPU offload to save GPU memory if enabled if ENABLE_CPU_OFFLOAD: pipe.enable_model_cpu_offload() # Maximum seed value for randomization MAX_SEED = np.iinfo(np.int32).max # Function to save the generated image def save_image(img): unique_name = str(uuid.uuid4()) + ".png" img.save(unique_name) return unique_name # Function to randomize the seed if needed def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed # Defining the main generation function with GPU acceleration @spaces.GPU(duration=60, enable_queue=True) def generate( prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False, seed: int = 1, width: int = 1024, height: int = 1024, guidance_scale: float = 3, num_inference_steps: int = 25, randomize_seed: bool = False, use_resolution_binning: bool = True, num_images: int = 1, progress=gr.Progress(track_tqdm=True), ): # Randomizing the seed if required seed = int(randomize_seed_fn(seed, randomize_seed)) generator = torch.Generator(device=device).manual_seed(seed) # Setting up the options for the image generation options = { "prompt": [prompt] * num_images, "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, "width": width, "height": height, "guidance_scale": guidance_scale, "num_inference_steps": num_inference_steps, "generator": generator, "output_type": "pil", } if use_resolution_binning: options["use_resolution_binning"] = True # Generating images in batches images = [] for i in range(0, num_images, BATCH_SIZE): batch_options = options.copy() batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] if "negative_prompt" in batch_options: batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] images.extend(pipe(**batch_options).images) # Saving the generated images image_paths = [save_image(img) for img in images] return image_paths, seed # Function to set the wallpaper size based on the selected option def set_wallpaper_size(size): if size == "phone": return 1080, 1920 elif size == "desktop": return 1920, 1080 return 1024, 1024 # Function to load predefined images for display def load_predefined_images(): predefined_images = [ "assets/image1.png", "assets/image2.png", "assets/image3.png", "assets/image4.png", "assets/image5.png", "assets/image6.png", "assets/image7.png", "assets/image8.png", "assets/image9.png", ] return predefined_images # Defining the Gradio interface with blocks with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: gr.Markdown(DESCRIPTIONx) with gr.Group(): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Gallery(label="Result", columns=1, show_label=False) with gr.Group(): wallpaper_size = gr.Radio( choices=["phone", "desktop", "custom"], label="Wallpaper Size", value="desktop" ) width = gr.Slider( label="Width", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1920, visible=False, ) height = gr.Slider( label="Height", minimum=512, maximum=MAX_IMAGE_SIZE, step=64, value=1080, visible=False, ) # Changing the wallpaper size based on user selection wallpaper_size.change( fn=set_wallpaper_size, inputs=wallpaper_size, outputs=[width, height], api_name="set_wallpaper_size" ) # Advanced options for image generation with gr.Accordion("Advanced options", open=False, visible=False): num_images = gr.Slider( label="Number of Images", minimum=1, maximum=4, step=1, value=1, ) with gr.Row(): use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) negative_prompt = gr.Text( label="Negative prompt", max_lines=5, lines=4, placeholder="Enter a negative prompt", value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", visible=True, ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=0.1, maximum=6, step=0.1, value=3.0, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=25, step=1, value=20, ) # Adding examples for the user to try gr.Examples( examples=examples, inputs=prompt, cache_examples=False ) # Changing the visibility of the negative prompt based on user selection use_negative_prompt.change( fn=lambda x: gr.update(visible=x), inputs=use_negative_prompt, outputs=negative_prompt, api_name=False, ) # Setting up the triggers and linking them to the generate function gr.on( triggers=[ prompt.submit, negative_prompt.submit, run_button.click, ], fn=generate, inputs=[ prompt, negative_prompt, use_negative_prompt, seed, width, height, guidance_scale, num_inference_steps, randomize_seed, num_images ], outputs=[result, seed], api_name="run", ) # Adding a predefined gallery section gr.Markdown("### Sample Images") predefined_gallery = gr.Gallery(label="Predefined Images", columns=3, show_label=False, value=load_predefined_images()) # Adding a disclaimer gr.Markdown("**Disclaimer:**") gr.Markdown("This is the demo space for generating wallpapers using detailed prompts. This space works best for desktop-sized images (1920x1080). Reasonable quality images can be generated for mobile sizes (1080x1920), and custom images (1024x1024) can also be generated with better quality. Mobile settings may become disfigured. Try the sample prompts for generating higher quality images.Try prompts.") # Adding a note about user responsibility gr.Markdown("**Note:**") gr.Markdown("⚠️ users are accountable for the content they generate and are responsible for ensuring it meets appropriate ethical standards.") # Launching the Gradio interface if __name__ == "__main__": demo.queue(max_size=40).launch()