File size: 14,945 Bytes
0c1b8f7
a01646a
 
 
 
 
3df271a
b06a87f
a01646a
0c1b8f7
fca22b9
0c1b8f7
a01646a
 
32d8e74
3df271a
a01646a
 
 
 
 
 
 
 
fca22b9
3df271a
d5fdad9
3df271a
 
 
 
 
 
 
 
 
 
d5fdad9
3df271a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5fdad9
40dd3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df271a
fca22b9
 
 
 
 
 
 
 
d6b5ac6
3df271a
40dd3a7
 
 
 
 
3df271a
fca22b9
 
 
 
 
 
0886910
fca22b9
d7f29b6
7f471f2
b06a87f
 
 
 
83a0174
40dd3a7
 
 
 
 
 
 
 
 
83a0174
6c3e861
a01646a
 
 
6c3e861
a01646a
 
 
 
 
 
 
 
 
6c3e861
 
 
a01646a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5fdad9
a01646a
 
 
 
 
43f0687
 
 
 
 
 
a01646a
 
 
3df271a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48a6837
40dd3a7
 
 
 
 
 
 
 
 
 
3df271a
 
 
6c3e861
 
 
3df271a
40dd3a7
fca22b9
a592e13
40dd3a7
3df271a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a01646a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df271a
40dd3a7
3df271a
40dd3a7
 
 
c9c7955
40dd3a7
 
 
 
 
 
 
 
 
 
a01646a
 
 
 
 
 
 
40dd3a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea9ba29
fca22b9
0ba4242
fca22b9
40dd3a7
ea9ba29
40dd3a7
ea9ba29
 
0ba4242
 
40dd3a7
3df271a
40dd3a7
45d61ba
40dd3a7
 
0ba4242
fca22b9
40dd3a7
 
 
0ba4242
fca22b9
 
 
0ba4242
47473ae
0c1b8f7
c11a2d2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
import random
import uuid
import json
import time
import asyncio
import tempfile
from threading import Thread

import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import trimesh

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    TextIteratorStreamer,
    Qwen2VLForConditionalGeneration,
    AutoProcessor,
)
from transformers.image_utils import load_image

from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
from diffusers.utils import export_to_ply


MAX_SEED = np.iinfo(np.int32).max

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

class Model:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
        self.pipe.to(self.device)
        # Ensure the text encoder is in half precision to avoid dtype mismatches.
        if torch.cuda.is_available():
            try:
                self.pipe.text_encoder = self.pipe.text_encoder.half()
            except AttributeError:
                pass

        self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
        self.pipe_img.to(self.device)
        # Use getattr with a default value to avoid AttributeError if text_encoder is missing.
        if torch.cuda.is_available():
            text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
            if text_encoder_img is not None:
                self.pipe_img.text_encoder = text_encoder_img.half()

    def to_glb(self, ply_path: str) -> str:
        mesh = trimesh.load(ply_path)
        # Rotate the mesh for proper orientation
        rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
        mesh.apply_transform(rot)
        rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
        mesh.apply_transform(rot)
        mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
        mesh.export(mesh_path.name, file_type="glb")
        return mesh_path.name

    def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
        generator = torch.Generator(device=self.device).manual_seed(seed)
        images = self.pipe(
            prompt,
            generator=generator,
            guidance_scale=guidance_scale,
            num_inference_steps=num_steps,
            output_type="mesh",
        ).images
        ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
        export_to_ply(images[0], ply_path.name)
        return self.to_glb(ply_path.name)

    def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
        generator = torch.Generator(device=self.device).manual_seed(seed)
        images = self.pipe_img(
            image,
            generator=generator,
            guidance_scale=guidance_scale,
            num_inference_steps=num_steps,
            output_type="mesh",
        ).images
        ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
        export_to_ply(images[0], ply_path.name)
        return self.to_glb(ply_path.name)

DESCRIPTION = """
# QwQ Edge 💬
"""

css = '''
h1 {
  text-align: center;
  display: block;
}

#duplicate-button {
  margin: auto;
  color: #fff;
  background: #1565c0;
  border-radius: 100vh;
}
'''

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load the text-only model and tokenizer (for pure text chat)
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

# Voices for text-to-speech
TTS_VOICES = [
    "en-US-JennyNeural",  # @tts1
    "en-US-GuyNeural",    # @tts2
]

# Load multimodal processor and model (e.g. for OCR and image processing)
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct" 
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
    MODEL_ID,
    trust_remote_code=True,
    torch_dtype=torch.float16
).to("cuda").eval()

async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
    """Convert text to speech using Edge TTS and save as MP3"""
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(output_file)
    return output_file

def clean_chat_history(chat_history):
    """
    Filter out any chat entries whose "content" is not a string.
    This helps prevent errors when concatenating previous messages.
    """
    cleaned = []
    for msg in chat_history:
        if isinstance(msg, dict) and isinstance(msg.get("content"), str):
            cleaned.append(msg)
    return cleaned

MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")  # SDXL Model repository path via env variable
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))  # For batched image generation

sd_pipe = StableDiffusionXLPipeline.from_pretrained(
    MODEL_ID_SD,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
    use_safetensors=True,
    add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)

if torch.cuda.is_available():
    sd_pipe.text_encoder = sd_pipe.text_encoder.half()

if USE_TORCH_COMPILE:
    sd_pipe.compile()

if ENABLE_CPU_OFFLOAD:
    sd_pipe.enable_model_cpu_offload()

def save_image(img: Image.Image) -> str:
    """Save a PIL image with a unique filename and return the path."""
    unique_name = str(uuid.uuid4()) + ".png"
    img.save(unique_name)
    return unique_name

@spaces.GPU(duration=60, enable_queue=True)
def generate_image_fn(
    prompt: str,
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 1,
    width: int = 1024,
    height: int = 1024,
    guidance_scale: float = 3,
    num_inference_steps: int = 25,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    num_images: int = 1,
    progress=gr.Progress(track_tqdm=True),
):
    """Generate images using the SDXL pipeline."""
    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator(device=device).manual_seed(seed)

    options = {
        "prompt": [prompt] * num_images,
        "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
        "width": width,
        "height": height,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "generator": generator,
        "output_type": "pil",
    }
    if use_resolution_binning:
        options["use_resolution_binning"] = True

    images = []
    # Process in batches
    for i in range(0, num_images, BATCH_SIZE):
        batch_options = options.copy()
        batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
        if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
            batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
        if device.type == "cuda":
            with torch.autocast("cuda", dtype=torch.float16):
                outputs = sd_pipe(**batch_options)
        else:
            outputs = sd_pipe(**batch_options)
        images.extend(outputs.images)
    image_paths = [save_image(img) for img in images]
    return image_paths, seed

@spaces.GPU(duration=120, enable_queue=True)
def generate_3d_fn(
    prompt: str,
    seed: int = 1,
    guidance_scale: float = 15.0,
    num_steps: int = 64,
    randomize_seed: bool = False,
):
    """
    Generate a 3D model from text using the ShapE pipeline.
    Returns a tuple of (glb_file_path, used_seed).
    """
    seed = int(randomize_seed_fn(seed, randomize_seed))
    model3d = Model()
    glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
    return glb_path, seed

@spaces.GPU
def generate(
    input_dict: dict,
    chat_history: list[dict],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
):
    """
    Generates chatbot responses with support for multimodal input, TTS, image generation,
    and 3D model generation.
    
    Special commands:
      - "@tts1" or "@tts2": triggers text-to-speech.
      - "@image": triggers image generation using the SDXL pipeline.
      - "@3d": triggers 3D model generation using the ShapE pipeline.
    """
    text = input_dict["text"]
    files = input_dict.get("files", [])

    # --- 3D Generation branch ---
    if text.strip().lower().startswith("@3d"):
        prompt = text[len("@3d"):].strip()
        yield "Generating 3D model..."
        glb_path, used_seed = generate_3d_fn(
            prompt=prompt,
            seed=1,
            guidance_scale=15.0,
            num_steps=64,
            randomize_seed=True,
        )
        # Instead of returning as a file, yield a 3D model component so it displays inline.
        yield gr.Model3D(value=glb_path, label="3D Model")
        return

    # --- Image Generation branch ---
    if text.strip().lower().startswith("@image"):
        prompt = text[len("@image"):].strip()
        yield "Generating image..."
        image_paths, used_seed = generate_image_fn(
            prompt=prompt,
            negative_prompt="",
            use_negative_prompt=False,
            seed=1,
            width=1024,
            height=1024,
            guidance_scale=3,
            num_inference_steps=25,
            randomize_seed=True,
            use_resolution_binning=True,
            num_images=1,
        )
        yield gr.Image(image_paths[0])
        return

    # --- Text and TTS branch ---
    tts_prefix = "@tts"
    is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
    voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
    
    if is_tts and voice_index:
        voice = TTS_VOICES[voice_index - 1]
        text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
        conversation = [{"role": "user", "content": text}]
    else:
        voice = None
        text = text.replace(tts_prefix, "").strip()
        conversation = clean_chat_history(chat_history)
        conversation.append({"role": "user", "content": text})

    if files:
        if len(files) > 1:
            images = [load_image(image) for image in files]
        elif len(files) == 1:
            images = [load_image(files[0])]
        else:
            images = []
        messages = [{
            "role": "user",
            "content": [
                *[{"type": "image", "image": image} for image in images],
                {"type": "text", "text": text},
            ]
        }]
        prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
        streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
        thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
        thread.start()

        buffer = ""
        yield "Thinking..."
        for new_text in streamer:
            buffer += new_text
            buffer = buffer.replace("<|im_end|>", "")
            time.sleep(0.01)
            yield buffer
    else:
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
        if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
            input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
            gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
        input_ids = input_ids.to(model.device)
        streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
        generation_kwargs = {
            "input_ids": input_ids,
            "streamer": streamer,
            "max_new_tokens": max_new_tokens,
            "do_sample": True,
            "top_p": top_p,
            "top_k": top_k,
            "temperature": temperature,
            "num_beams": 1,
            "repetition_penalty": repetition_penalty,
        }
        t = Thread(target=model.generate, kwargs=generation_kwargs)
        t.start()

        outputs = []
        for new_text in streamer:
            outputs.append(new_text)
            yield "".join(outputs)

        final_response = "".join(outputs)
        yield final_response

        if is_tts and voice:
            output_file = asyncio.run(text_to_speech(final_response, voice))
            yield gr.Audio(output_file, autoplay=True)

demo = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
        gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
        gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
        gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
        gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
    ],
    examples=[
        ["@tts1 Who is Nikola Tesla, and why did he die?"],
        ["@3d A birthday cupcake with cherry"],
        [{"text": "summarize the letter", "files": ["examples/1.png"]}],
        ["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
        ["Write a Python function to check if a number is prime."],
        ["@tts2 What causes rainbows to form?"],
    ],
    cache_examples=False,
    type="messages",
    description=DESCRIPTION,
    css=css,
    fill_height=True,
    textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
    stop_btn="Stop Generation",
    multimodal=True,
)

if __name__ == "__main__":
    # To create a public link, set share=True in launch().
    demo.queue(max_size=20).launch(share=True)