File size: 6,338 Bytes
0c1b8f7
fca22b9
a01646a
848917c
 
 
a01646a
40dd3a7
848917c
 
 
 
 
 
 
 
 
 
 
a01646a
2b1f8da
848917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b1f8da
c9a1d71
848917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a01646a
2b1f8da
 
848917c
 
c9a1d71
 
848917c
c9a1d71
848917c
 
a01646a
 
848917c
 
a01646a
848917c
a01646a
848917c
c9a1d71
 
848917c
c9a1d71
 
 
 
 
848917c
 
 
 
 
 
 
 
 
 
c9a1d71
 
 
 
 
 
 
 
 
 
 
 
4a4da06
bcc7a7d
848917c
bcc7a7d
848917c
 
 
 
 
 
 
 
 
 
c9a1d71
848917c
c9a1d71
848917c
c9a1d71
848917c
 
 
 
 
 
 
 
 
 
 
c9a1d71
848917c
 
 
c9a1d71
 
848917c
 
c9a1d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848917c
 
 
 
 
c9a1d71
 
 
848917c
 
 
47473ae
0c1b8f7
848917c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import spaces
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"

torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)

pipe.load_lora_weights("prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", weight_name="SD3.5-Turbo-Realism-2.0-LoRA.safetensors")
trigger_word = "Turbo Realism"  
pipe.fuse_lora(lora_scale=1.0)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# Define styles
style_list = [
    {
        "name": "3840 x 2160",
        "prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "2560 x 1440",
        "prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "HD+",
        "prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
        "negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
    },
    {
        "name": "Style Zero",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
]

STYLE_NAMES = [s["name"] for s in style_list]
DEFAULT_STYLE_NAME = STYLE_NAMES[0]

grid_sizes = {
    "2x1": (2, 1),
    "1x2": (1, 2),
    "2x2": (2, 2),
    "2x3": (2, 3),
    "3x2": (3, 2),
    "1x1": (1, 1)
}

@spaces.GPU(duration=60)
def infer(
    prompt,
    negative_prompt="",
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=7.5,
    num_inference_steps=10,
    style="Style Zero",
    grid_size="1x1",
    progress=gr.Progress(track_tqdm=True),
):
    selected_style = next(s for s in style_list if s["name"] == style)
    styled_prompt = selected_style["prompt"].format(prompt=prompt)
    styled_negative_prompt = selected_style["negative_prompt"]

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)
    grid_x, grid_y = grid_sizes.get(grid_size, (1, 1))
    num_images = grid_x * grid_y

    opts = {
        "prompt": styled_prompt,
        "negative_prompt": styled_negative_prompt,
        "guidance_scale": guidance_scale,
        "num_inference_steps": num_inference_steps,
        "width": width,
        "height": height,
        "generator": generator,
        "num_images_per_prompt": num_images,
    }

    torch.cuda.empty_cache()
    res = pipe(**opts)

    grid_img = Image.new('RGB', (width * grid_x, height * grid_y))
    for i, img in enumerate(res.images[:num_images]):
        x = (i % grid_x) * width
        y = (i // grid_x) * height
        grid_img.paste(img, (x, y))

    return grid_img, seed

examples = [
    "A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
    "An anime-style illustration of a delicious, golden-brown wiener schnitzel on a plate, served with fresh lemon slices, parsley --style raw5",
    "Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K, Photo-Realistic",
    "A cat holding a sign that says hello world --ar 85:128 --v 6.0 --style raw"
]

css = '''
.gradio-container {
    max-width: 585px !important;
    margin: 0 auto !important;
    display: flex;
    flex-direction: column;
    align-items: center;
    justify-content: center;
}
h1 { text-align: center; }
footer { visibility: hidden; }
'''

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## T2i Grid 6x")

        with gr.Row():
            prompt = gr.Text(
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(show_label=False)

        with gr.Row():
            grid_size_selection = gr.Dropdown(
                choices=list(grid_sizes.keys()),
                value="1x1",
                label="Grid Size"
            )

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
            )
            seed = gr.Slider(0, MAX_SEED, value=0, label="Seed")
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Width")
                height = gr.Slider(512, MAX_IMAGE_SIZE, step=32, value=1024, label="Height")

            with gr.Row():
                guidance_scale = gr.Slider(0.0, 7.5, step=0.1, value=7.5, label="Guidance scale")
                num_inference_steps = gr.Slider(1, 50, step=1, value=10, label="Number of inference steps")

            style_selection = gr.Radio(
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Quality Style",
            )

        gr.Examples(
            examples=examples,
            inputs=[prompt],
            outputs=[result, seed],
            fn=infer,
            cache_examples=False
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt, negative_prompt, seed, randomize_seed,
            width, height, guidance_scale, num_inference_steps,
            style_selection, grid_size_selection
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()