Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import numpy as np
|
4 |
import random
|
|
|
|
|
5 |
from diffusers import DiffusionPipeline
|
6 |
import torch
|
7 |
from PIL import Image
|
8 |
|
|
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
|
11 |
|
12 |
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
13 |
-
|
14 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
15 |
pipe = pipe.to(device)
|
16 |
|
17 |
-
|
18 |
-
trigger_word = "Turbo Portrait"
|
19 |
-
pipe.fuse_lora(lora_scale=1.0)
|
20 |
-
|
21 |
MAX_SEED = np.iinfo(np.int32).max
|
22 |
MAX_IMAGE_SIZE = 1024
|
23 |
|
@@ -44,65 +42,66 @@ style_list = [
|
|
44 |
"negative_prompt": "",
|
45 |
},
|
46 |
]
|
47 |
-
|
48 |
STYLE_NAMES = [s["name"] for s in style_list]
|
49 |
DEFAULT_STYLE_NAME = STYLE_NAMES[0]
|
50 |
|
|
|
51 |
grid_sizes = {
|
52 |
"2x1": (2, 1),
|
53 |
"1x2": (1, 2),
|
54 |
"2x2": (2, 2),
|
55 |
"2x3": (2, 3),
|
56 |
"3x2": (3, 2),
|
57 |
-
"1x1": (1, 1)
|
58 |
}
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
106 |
|
107 |
examples = [
|
108 |
"A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
|
5 |
+
import spaces
|
6 |
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
|
10 |
+
# Device and model setup
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
model_repo_id = "stabilityai/stable-diffusion-3.5-large-turbo"
|
13 |
|
14 |
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
|
|
15 |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
16 |
pipe = pipe.to(device)
|
17 |
|
18 |
+
# Constants
|
|
|
|
|
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
|
|
42 |
"negative_prompt": "",
|
43 |
},
|
44 |
]
|
|
|
45 |
STYLE_NAMES = [s["name"] for s in style_list]
|
46 |
DEFAULT_STYLE_NAME = STYLE_NAMES[0]
|
47 |
|
48 |
+
# Define grid layouts
|
49 |
grid_sizes = {
|
50 |
"2x1": (2, 1),
|
51 |
"1x2": (1, 2),
|
52 |
"2x2": (2, 2),
|
53 |
"2x3": (2, 3),
|
54 |
"3x2": (3, 2),
|
55 |
+
"1x1": (1, 1),
|
56 |
}
|
57 | |
58 |
+
def infer(
|
59 |
+
prompt,
|
60 |
+
negative_prompt="",
|
61 |
+
seed=42,
|
62 |
+
randomize_seed=False,
|
63 |
+
width=1024,
|
64 |
+
height=1024,
|
65 |
+
guidance_scale=7.5,
|
66 |
+
num_inference_steps=10,
|
67 |
+
style="Style Zero",
|
68 |
+
grid_size="1x1",
|
69 |
+
progress=gr.Progress(track_tqdm=True),
|
70 |
+
):
|
71 |
+
# Apply seed
|
72 |
+
if randomize_seed:
|
73 |
+
seed = random.randint(0, MAX_SEED)
|
74 |
+
generator = torch.Generator().manual_seed(seed)
|
75 |
+
|
76 |
+
# Style formatting
|
77 |
+
selected_style = next(s for s in style_list if s["name"] == style)
|
78 |
+
styled_prompt = selected_style["prompt"].format(prompt=prompt)
|
79 |
+
styled_negative = selected_style["negative_prompt"] or negative_prompt
|
80 |
+
|
81 |
+
# Grid calculation
|
82 |
+
grid_x, grid_y = grid_sizes.get(grid_size, (1, 1))
|
83 |
+
num_images = grid_x * grid_y
|
84 |
+
|
85 |
+
# Inference
|
86 |
+
output = pipe(
|
87 |
+
prompt=styled_prompt,
|
88 |
+
negative_prompt=styled_negative,
|
89 |
+
width=width,
|
90 |
+
height=height,
|
91 |
+
guidance_scale=guidance_scale,
|
92 |
+
num_inference_steps=num_inference_steps,
|
93 |
+
generator=generator,
|
94 |
+
num_images_per_prompt=num_images,
|
95 |
+
)
|
96 |
+
|
97 |
+
# Combine into grid
|
98 |
+
grid_img = Image.new('RGB', (width * grid_x, height * grid_y))
|
99 |
+
for i, img in enumerate(output.images[:num_images]):
|
100 |
+
x = (i % grid_x) * width
|
101 |
+
y = (i // grid_x) * height
|
102 |
+
grid_img.paste(img, (x, y))
|
103 |
+
|
104 |
+
return grid_img, seed
|
105 |
|
106 |
examples = [
|
107 |
"A tiny astronaut hatching from an egg on the moon, 4k, planet theme",
|