Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,903 Bytes
71b21b4 7fcd908 71b21b4 7fcd908 71b21b4 7fcd908 71b21b4 7fcd908 71b21b4 7fcd908 71b21b4 f4bb0af 7fcd908 74ba6ce 7fcd908 fda00e3 7fcd908 0bb2a54 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 71b21b4 54875b8 7fcd908 78be7e8 7fcd908 71b21b4 78be7e8 7fcd908 78be7e8 fda00e3 54875b8 7fcd908 74ba6ce 7fcd908 78be7e8 7fcd908 54875b8 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 7fcd908 fda00e3 74ba6ce 7fcd908 fda00e3 7fcd908 fda00e3 000d66d fda00e3 5c9a830 fda00e3 000d66d fda00e3 74ba6ce fda00e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# -----------------------
# Progress Bar Helper
# -----------------------
def progress_bar_html(label: str) -> str:
"""
Returns an HTML snippet for a thin progress bar with a label.
The progress bar is styled as a dark red animated bar.
"""
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #DDA0DD; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #FF00FF; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# -----------------------
# Text Generation Setup
# -----------------------
model_id = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
# -----------------------
# Multimodal OCR Setup
# -----------------------
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
"""Convert text to speech using Edge TTS and save as MP3"""
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
"""
Filter out any chat entries whose "content" is not a string.
"""
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
# -----------------------
# Stable Diffusion Image Generation Setup
# -----------------------
MAX_SEED = np.iinfo(np.int32).max
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = False
if torch.cuda.is_available():
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning",
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
# LoRA options with one example for each.
LORA_OPTIONS = {
"Realism": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
"Pixar": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
"Photoshoot": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
"Clothing": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
"Interior": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
"Fashion": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
"Minimalistic": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
"Modern": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
"Animaliea": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
"Wallpaper": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
"Cars": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
"PencilArt": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
"ArtMinimalistic": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}
# Load all LoRA weights
for model_name, weight_name, adapter_name in LORA_OPTIONS.values():
pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
pipe.to("cuda")
else:
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning",
torch_dtype=torch.float32,
use_safetensors=True,
).to(device)
def save_image(img: Image.Image) -> str:
"""Save a PIL image with a unique filename and return the path."""
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
@spaces.GPU(duration=180, enable_queue=True)
def generate_image(
prompt: str,
negative_prompt: str = "",
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3.0,
randomize_seed: bool = True,
lora_model: str = "Realism",
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
effective_negative_prompt = negative_prompt # Use provided negative prompt if any
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
pipe.set_adapters(adapter_name)
outputs = pipe(
prompt=prompt,
negative_prompt=effective_negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=28,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
)
images = outputs.images
image_paths = [save_image(img) for img in images]
return image_paths, seed
# -----------------------
# Main Chat/Generation Function
# -----------------------
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
"""
Generates chatbot responses with support for multimodal input, TTS, and image generation.
Special commands:
- "@tts1" or "@tts2": triggers text-to-speech.
- "@<lora_command>": triggers image generation using the new LoRA pipeline.
Available commands (case-insensitive): @realism, @pixar, @photoshoot, @clothing, @interior, @fashion,
@minimalistic, @modern, @animaliea, @wallpaper, @cars, @pencilart, @artminimalistic.
"""
text = input_dict["text"]
files = input_dict.get("files", [])
# Check for image generation command based on LoRA tags.
lora_mapping = { key.lower(): key for key in LORA_OPTIONS }
for key_lower, key in lora_mapping.items():
command_tag = "@" + key_lower
if text.strip().lower().startswith(command_tag):
prompt_text = text.strip()[len(command_tag):].strip()
yield progress_bar_html(f"Processing Image Generation ({key} style)")
image_paths, used_seed = generate_image(
prompt=prompt_text,
negative_prompt="",
seed=1,
width=1024,
height=1024,
guidance_scale=3,
randomize_seed=True,
lora_model=key,
)
yield progress_bar_html("Finalizing Image Generation")
yield gr.Image(image_paths[0])
return
# Check for TTS command (@tts1 or @tts2)
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if is_tts and voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
conversation = [{"role": "user", "content": text}]
else:
voice = None
text = text.replace(tts_prefix, "").strip()
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if files:
if len(files) > 1:
images = [load_image(image) for image in files]
elif len(files) == 1:
images = [load_image(files[0])]
else:
images = []
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL Ocr")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
if is_tts and voice:
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
# -----------------------
# Gradio Chat Interface
# -----------------------
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
["@realism Chocolate dripping from a donut, hyper-realistic"],
["@pixar Young man with wavy hair in an armchair, Pixar style"],
["@realism Futuristic cityscape with neon lights"],
["Write the python array rotation program"],
["@photoshoot Dramatic portrait lighting"],
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
["@tts1 Who was Nikola Tesla and how did he die?"],
["@clothing Fashionable streetwear in the city"],
["@interior Modern minimalist living room"],
["@fashion Runway model in haute couture"],
["@minimalistic Elegant serene landscape"],
["@modern Abstract geometric art"],
["@animaliea Cute animal portrait, vibrant colors"],
["@wallpaper Scenic mountain desktop wallpaper"],
["@cars Sleek sports car on city streets"],
["@pencilart Detailed historic building sketch"],
["@artminimalistic Subtle minimalist artwork"],
["@tts2 What causes rainbows?"],
],
cache_examples=False,
type="messages",
description="# **Gen Vision Sdxl** `tts: @tts1 @tts2` \n `image-tags: @realism, @pixar, @photoshoot, @clothing, @interior, @fashion, @minimalistic, @modern, @animaliea, @wallpaper, @cars, @pencilart, @artminimalistic` \n \n `default: chat, image inference`",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple", placeholder="text, image-infer, image-generation, tts"),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True) |