Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,012 Bytes
2e94d15 f06faee 2e94d15 88f4ad1 2e94d15 6091fe1 f06faee 6091fe1 f06faee 764dc74 6091fe1 764dc74 f06faee 6091fe1 f06faee 6091fe1 7f9076e 3d94f29 7f9076e 58b79f9 7f9076e 6091fe1 58b79f9 2e94d15 f06faee 2e94d15 f06faee 2e94d15 f06faee 2e94d15 f06faee 2e94d15 f06faee 2e94d15 7f9076e f06faee 2e94d15 6091fe1 7f9076e f06faee 6091fe1 764dc74 2e94d15 f06faee 2e94d15 6091fe1 f06faee 7f9076e 6091fe1 7f9076e 6091fe1 764dc74 7f9076e 6091fe1 2e94d15 f06faee 6091fe1 f06faee 2e94d15 3288d44 2e94d15 6091fe1 2e94d15 7f9076e 6091fe1 f06faee 6091fe1 5fd2254 88f4ad1 6091fe1 c6f8f53 6091fe1 946fa21 6091fe1 2e94d15 6091fe1 2e94d15 7f9076e 6091fe1 2e94d15 6091fe1 2e94d15 6091fe1 2e94d15 6091fe1 2e94d15 f06faee 2e94d15 7f9076e 6091fe1 2e94d15 6091fe1 2e94d15 6091fe1 f06faee 6091fe1 764dc74 6091fe1 764dc74 6091fe1 7f9076e 6091fe1 f06faee 3d94f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
import os
import random
import uuid
from typing import Tuple
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
title = """<h1>SDXL LoRA DLC π€©</h1>"""
# Ensure assets directory exists if needed for predefined images
if not os.path.exists("assets"):
print("Warning: 'assets' directory not found. Predefined gallery might be empty.")
# Optionally create it: os.makedirs("assets")
def save_image(img):
# Ensure an 'outputs' directory exists to save generated images (optional, good practice)
output_dir = "outputs"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
unique_name = os.path.join(output_dir, str(uuid.uuid4()) + ".png")
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
pipe = None # Initialize pipe to None
if not torch.cuda.is_available():
DESCRIPTIONz += "\n<p>β οΈRunning on CPU, This may not work on CPU. If it runs for an extended time or if you encounter errors, try running it on a GPU by duplicating the space using @spaces.GPU(). +import spaces.π</p>"
# Optionally, you could add a placeholder or disable functionality here
else:
USE_TORCH_COMPILE = False # Set to False as 0 is not standard boolean
ENABLE_CPU_OFFLOAD = False # Set to False as 0 is not standard boolean
# Moved pipe initialization inside the CUDA check
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning", # [or] SG161222/RealVisXL_V5.0_Lightning
torch_dtype=torch.float16,
use_safetensors=True,
)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
LORA_OPTIONS = {
"Realism (face/character)π¦π»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
"Pixar (art/toons)π": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
"Photoshoot (camera/film)πΈ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
"Clothing (hoodies/pant/shirts)π": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
"Interior Architecture (house/hotel)π ": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1Ξ΄.safetensors", "arch"),
"Fashion Product (wearing/usable)π": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
"Minimalistic Image (minimal/detailed)ποΈ": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
"Modern Clothing (trend/new)π": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
"Animaliea (farm/wild)π«": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
"Liquid Wallpaper (minimal/illustration)πΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
"Canes Cars (realistic/futurecars)π": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
"Pencil Art (characteristic/creative)βοΈ": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
"Art Minimalistic (paint/semireal)π¨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}
# Load LoRAs only if pipe is initialized
if pipe:
for model_name, weight_name, adapter_name in LORA_OPTIONS.values():
try:
pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
print(f"Loaded LoRA: {adapter_name}")
except Exception as e:
print(f"Warning: Could not load LoRA {adapter_name} from {model_name}. Error: {e}")
pipe.to("cuda")
print("Pipeline and LoRAs loaded to CUDA.")
else:
print("Pipeline not initialized (likely no CUDA available).")
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME]) # Use .get for safety
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + " " + negative # Add space for clarity
@spaces.GPU(duration=180, enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
lora_model: str = "Realism (face/character)π¦π»",
progress=gr.Progress(track_tqdm=True),
):
if pipe is None:
raise gr.Error("Pipeline not initialized. Check if CUDA is available and drivers are installed.")
seed = int(randomize_seed_fn(seed, randomize_seed))
# Apply style first
positive_prompt, base_negative_prompt = apply_style(style_name, prompt, negative_prompt if use_negative_prompt else "")
# If user explicitly provided a negative prompt and wants to use it, append it
# (apply_style already incorporates the style's negative prompt)
# This logic might need adjustment depending on desired behavior: replace or append?
# Current: Style neg prompt + user neg prompt
effective_negative_prompt = base_negative_prompt
if use_negative_prompt and negative_prompt:
# Check if the negative prompt from apply_style is already there to avoid duplication
if not negative_prompt in effective_negative_prompt:
effective_negative_prompt = (effective_negative_prompt + " " + negative_prompt).strip()
# Ensure LoRA selection is valid
if lora_model not in LORA_OPTIONS:
print(f"Warning: Invalid LoRA selection '{lora_model}'. Using default or first available.")
# Fallback logic could be added here, e.g., use the first key
lora_model = next(iter(LORA_OPTIONS)) # Get the first key as a fallback
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
try:
print(f"Setting adapter: {adapter_name}")
pipe.set_adapters(adapter_name)
# Optional: Add LoRA scale if needed, often done via cross_attention_kwargs
# Example: cross_attention_kwargs={"scale": lora_scale}
# Note: RealVisXL Lightning might not need explicit scale adjustments like older models.
# Using 0.65 as hardcoded before. Keeping it.
lora_scale = 0.65
print(f"Generating with prompt: '{positive_prompt}'")
print(f"Negative prompt: '{effective_negative_prompt}'")
print(f"Seed: {seed}, W: {width}, H: {height}, Scale: {guidance_scale}, Steps: 20")
images = pipe(
prompt=positive_prompt,
negative_prompt=effective_negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=20, # Lightning models use fewer steps
num_images_per_prompt=1,
generator=torch.Generator("cuda").manual_seed(seed), # Ensure reproducibility
cross_attention_kwargs={"scale": lora_scale}, # Apply LoRA scale if needed
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
print(f"Generated {len(image_paths)} image(s).")
return image_paths, seed
except Exception as e:
print(f"Error during generation: {e}")
# Raise a Gradio error to display it in the UI
import traceback
traceback.print_exc()
raise gr.Error(f"Generation failed: {e}")
examples = [
["Realism: Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational"],
["Pixar: A young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background, ultra detailed, 1 man"],
["Hoodie: Front view, capture a urban style, Superman Hoodie, technical materials, fabric small point label on text Blue theory, the design is minimal, with a raised collar, fabric is a Light yellow, low angle to capture the Hoodies form and detailing, f/5.6 to focus on the hoodies craftsmanship, solid grey background, studio light setting, with batman logo in the chest region of the t-shirt"],
]
css = '''
.gradio-container{max-width: 680px !important; margin: auto;}
h1{text-align:center}
#gallery { min-height: 400px; }
footer { display: none !important; visibility: hidden !important; }
'''
def load_predefined_images():
predefined_images = []
asset_dir = "assets"
if os.path.exists(asset_dir):
valid_extensions = {".png", ".jpg", ".jpeg", ".webp"}
try:
for i in range(1, 10): # Try loading 1.png to 9.png
for ext in valid_extensions:
img_path = os.path.join(asset_dir, f"{i}{ext}")
if os.path.exists(img_path):
predefined_images.append(img_path)
break # Found image for this number, move to next
except Exception as e:
print(f"Error loading predefined images: {e}")
if not predefined_images:
print("No predefined images found in assets folder (e.g., assets/1.png, assets/2.jpg).")
return predefined_images
# --- Gradio UI Definition ---
with gr.Blocks(css=css, theme="Yntec/HaleyCH_Theme_craiyon_alt") as demo:
gr.HTML(title)
# Define the output gallery component first
result_gallery = gr.Gallery(
label="Generated Images",
show_label=False,
elem_id="gallery", # For CSS styling
columns=1, # Adjust as needed
height="auto"
)
# Define the output seed component
output_seed = gr.State(value=0) # Use gr.State for non-displayed outputs or values needing persistence
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt here...",
container=False,
scale=7 # Give more space to prompt
)
run_button = gr.Button("Generate", scale=1, variant="primary")
with gr.Row():
model_choice = gr.Dropdown(
label="LoRA Selection",
choices=list(LORA_OPTIONS.keys()),
value="Realism (face/character)π¦π»", # Default selection
scale=3
)
style_selection = gr.Radio(
show_label=False, # Label provided by Row context or Accordion
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
scale=2
)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label="Use Negative Prompt", value=True, scale=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True, scale=1)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0, # Initial value
visible=True, # Controlled by randomize_seed logic later if needed
scale=3
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
lines=2,
max_lines=4,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
placeholder="Enter things to avoid...",
visible=True, # Controlled by use_negative_prompt checkbox
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=1536, # Adjusted max for typical SDXL usage
step=64, # Step by 64 for common resolutions
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=1536, # Adjusted max
step=64, # Step by 64
value=1024,
)
guidance_scale = gr.Slider(
label="Guidance Scale (CFG)",
minimum=1.0, # Usually start CFG from 1
maximum=10.0, # Lightning models often use low CFG
step=0.1,
value=3.0,
)
# --- Event Listeners ---
# Toggle negative prompt visibility
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
# Toggle seed slider visibility based on randomize checkbox
# def toggle_seed_visibility(randomize):
# return gr.update(interactive=not randomize)
# randomize_seed.change(
# fn=toggle_seed_visibility,
# inputs=randomize_seed,
# outputs=seed,
# api_name=False
# )
# --- Image Generation Trigger ---
inputs = [
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
style_selection,
model_choice,
]
# Define outputs using the created components
outputs = [
result_gallery, # The gallery to display images
output_seed # The state to hold the used seed
]
# Connect the generate function to the button click and prompt submit
gr.on(
triggers=[run_button.click, prompt.submit],
fn=generate,
inputs=inputs,
outputs=outputs,
api_name="run" # Keep API name if needed
)
# Update the seed slider display when a new seed is generated and returned via output_seed
output_seed.change(fn=lambda x: x, inputs=output_seed, outputs=seed, api_name=False)
# --- Examples ---
gr.Examples(
examples=examples,
inputs=[prompt], # Only prompt needed for examples
outputs=[result_gallery, output_seed], # Update example outputs as well
fn=generate, # Function to run when example is clicked
cache_examples=os.getenv("CACHE_EXAMPLES", "False").lower() == "true" # Cache examples in Spaces
)
# --- Predefined Image Gallery (Static) ---
with gr.Column(): # Use column for better layout control if needed
gr.Markdown("### Example Gallery (Predefined)")
try:
predefined_gallery_images = load_predefined_images()
if predefined_gallery_images:
predefined_gallery = gr.Gallery(
label="Predefined Images",
value=predefined_gallery_images,
columns=3,
show_label=False
)
else:
gr.Markdown("_(No predefined images found in 'assets' folder)_")
except Exception as e:
gr.Markdown(f"_Error loading predefined gallery: {e}_")
# --- Launch the App ---
if __name__ == "__main__":
demo.queue(max_size=20).launch(ssr_mode=True, debug=True) # Add debug=True for more detailed logs |