prithivMLmods's picture
Update app.py
58b79f9 verified
raw
history blame
11.4 kB
import os
import random
import uuid
from typing import Tuple
import gradio as gr
import numpy as np
from PIL import Image
import spaces
import torch
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
DESCRIPTIONz = """## SDXL-LoRA-DLC ⚑
"""
# Define model options
MODEL_OPTIONS = {
"RealVisXL V4.0 Lightning": "SG161222/RealVisXL_V4.0_Lightning",
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
}
# Dictionary to cache pipelines
pipelines = {}
def save_image(img):
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
if not torch.cuda.is_available():
DESCRIPTIONz += "\n<p>⚠️Running on CPU, This may not work on CPU. If it runs for an extended time or if you encounter errors, try running it on a GPU by duplicating the space using @spaces.GPU(). +import spaces.πŸ“</p>"
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
# Define LoRA options
LORA_OPTIONS = {
"Realism (face/character)πŸ‘¦πŸ»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
"Pixar (art/toons)πŸ™€": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
"Photoshoot (camera/film)πŸ“Έ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
"Clothing (hoodies/pant/shirts)πŸ‘”": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
"Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
"Fashion Product (wearing/usable)πŸ‘œ": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
"Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
"Modern Clothing (trend/new)πŸ‘•": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
"Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
"Liquid Wallpaper (minimal/illustration)πŸ–ΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
"Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
"Pencil Art (characteristic/creative)✏️": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
"Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}
# Function to load or retrieve a pipeline
def get_pipeline(model_name):
if model_name not in pipelines:
pipelines[model_name] = StableDiffusionXLPipeline.from_pretrained(
MODEL_OPTIONS[model_name],
torch_dtype=torch.float16,
use_safetensors=True,
)
pipelines[model_name].scheduler = EulerAncestralDiscreteScheduler.from_config(pipelines[model_name].scheduler.config)
for lora_model_name, lora_weight_name, lora_adapter_name in LORA_OPTIONS.values():
pipelines[model_name].load_lora_weights(lora_model_name, weight_name=lora_weight_name, adapter_name=lora_adapter_name)
pipelines[model_name].to("cuda")
return pipelines[model_name]
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
@spaces.GPU(duration=180, enable_queue=True)
def generate(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
lora_model: str = "Realism (face/character)πŸ‘¦πŸ»",
base_model: str = "RealVisXL V4.0 Lightning",
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
if not use_negative_prompt:
effective_negative_prompt = ""
pipe = get_pipeline(base_model)
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
pipe.set_adapters(adapter_name)
images = pipe(
prompt=positive_prompt,
negative_prompt=effective_negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=20,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
).images
image_paths = [save_image(img) for img in images]
return image_paths, seed
examples = [
"Realism: Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational ",
"Pixar: A young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background, ultra detailed, 1 man",
"Hoodie: Front view, capture a urban style, Superman Hoodie, technical materials, fabric small point label on text Blue theory, the design is minimal, with a raised collar, fabric is a Light yellow, low angle to capture the Hoodies form and detailing, f/5.6 to focus on the hoodies craftsmanship, solid grey background, studio light setting, with batman logo in the chest region of the t-shirt",
]
css = '''
.gradio-container{max-width: 545px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
def load_predefined_images():
predefined_images = [
"assets/1.png",
"assets/2.png",
"assets/3.png",
"assets/4.png",
"assets/5.png",
"assets/6.png",
"assets/7.png",
"assets/8.png",
"assets/9.png",
]
return predefined_images
with gr.Blocks(css=css) as demo:
gr.Markdown(DESCRIPTIONz)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt with resp. tag!",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
with gr.Accordion("Advanced options", open=False, visible=False):
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
negative_prompt = gr.Text(
label="Negative prompt",
lines=4,
max_lines=6,
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row(visible=True):
width = gr.Slider(
label="Width",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=2048,
step=8,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=0.1,
maximum=20.0,
step=0.1,
value=3.0,
)
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Quality Style",
)
# Add base model selection dropdown
with gr.Row():
base_model_choice = gr.Dropdown(
label="Base Model",
choices=list(MODEL_OPTIONS.keys()),
value="RealVisXL V4.0 Lightning",
)
with gr.Row(visible=True):
model_choice = gr.Dropdown(
label="LoRA Selection",
choices=list(LORA_OPTIONS.keys()),
value="Realism (face/character)πŸ‘¦πŸ»"
)
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples=False,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale,
randomize_seed,
style_selection,
model_choice,
base_model_choice,
],
outputs=[result, seed],
api_name="run",
)
with gr.Column(scale=3):
gr.Markdown("### Image Gallery")
predefined_gallery = gr.Gallery(label="Image Gallery", columns=3, show_label=False, value=load_predefined_images())
if __name__ == "__main__":
demo.queue(max_size=30).launch()