prithivMLmods's picture
Update app.py
78be7e8 verified
raw
history blame
13.5 kB
import os
import random
import uuid
import time
import asyncio
from threading import Thread
from typing import Tuple
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import cv2
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
)
from transformers.image_utils import load_image
# ---------------------------
# Global Settings and Devices
# ---------------------------
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
MAX_SEED = np.iinfo(np.int32).max
# ---------------------------
# IMAGE GEN LO_RA TAB: SDXL Gen with LoRA Options
# ---------------------------
# Load the SDXL pipeline
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # Path from env variable
if MODEL_ID_SD is None:
MODEL_ID_SD = "SG161222/RealVisXL_V4.0_Lightning" # default fallback
# Load SDXL pipeline (use GPU if available)
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
MODEL_ID_SD,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
use_safetensors=True,
add_watermarker=False,
).to(device)
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
if torch.cuda.is_available():
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
# Optional: compile or offload if desired
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
if USE_TORCH_COMPILE:
sd_pipe.compile()
if ENABLE_CPU_OFFLOAD:
sd_pipe.enable_model_cpu_offload()
def save_image(img: Image.Image) -> str:
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
# LoRA options and style definitions
LORA_OPTIONS = {
"Realism (face/character)πŸ‘¦πŸ»": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
"Pixar (art/toons)πŸ™€": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
"Photoshoot (camera/film)πŸ“Έ": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
"Clothing (hoodies/pant/shirts)πŸ‘”": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
"Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
"Fashion Product (wearing/usable)πŸ‘œ": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
"Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
"Modern Clothing (trend/new)πŸ‘•": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
"Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
"Liquid Wallpaper (minimal/illustration)πŸ–ΌοΈ": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
"Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
"Pencil Art (characteristic/creative)✏️": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
"Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
}
style_list = [
{
"name": "3840 x 2160",
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "2560 x 1440",
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "HD+",
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
},
{
"name": "Style Zero",
"prompt": "{prompt}",
"negative_prompt": "",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
DEFAULT_STYLE_NAME = "3840 x 2160"
STYLE_NAMES = list(styles.keys())
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
if style_name in styles:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
else:
p, n = styles[DEFAULT_STYLE_NAME]
return p.replace("{prompt}", positive), n + negative
@spaces.GPU(duration=180, enable_queue=True)
def generate_image_lora(
prompt: str,
negative_prompt: str = "",
use_negative_prompt: bool = True,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 3,
randomize_seed: bool = False,
style_name: str = DEFAULT_STYLE_NAME,
lora_model: str = "Realism (face/character)πŸ‘¦πŸ»",
progress=gr.Progress(track_tqdm=True),
):
seed = int(randomize_seed_fn(seed, randomize_seed))
positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
if not use_negative_prompt:
effective_negative_prompt = ""
# Set LoRA adapter based on selection
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
sd_pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
sd_pipe.to(device)
outputs = sd_pipe(
prompt=positive_prompt,
negative_prompt=effective_negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=20,
num_images_per_prompt=1,
cross_attention_kwargs={"scale": 0.65},
output_type="pil",
)
image_paths = [save_image(img) for img in outputs.images]
return image_paths, seed
# ---------------------------
# Qwen 2 VL OCR TAB
# ---------------------------
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_QWEN,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
@spaces.GPU
def qwen2vl_ocr_generate(
prompt: str,
file: list,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
# In this tab, we assume the user supplies an image (or multiple images) for OCR.
images = []
if file:
# load image(s) using the helper function
for f in file:
images.append(load_image(f))
else:
# If no image provided, use an empty list
images = []
# Build message content: We use a simple chat template with text and images.
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": prompt},
]
}]
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda" if torch.cuda.is_available() else "cpu")
# Use non-streaming generation for simplicity
output_ids = model_m.generate(
**inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
)
final_response = processor.tokenizer.decode(output_ids[0], skip_special_tokens=True)
return final_response
# ---------------------------
# CHAT INTERFACE TAB (Text-only)
# ---------------------------
# Load text-only model and tokenizer
model_id_text = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id_text)
model = AutoModelForCausalLM.from_pretrained(
model_id_text,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
def chat_generate(prompt: str, max_new_tokens: int = 1024, temperature: float = 0.6,
top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
# For simplicity, use a basic generate without streaming.
input_ids = tokenizer.encode(prompt, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
input_ids = input_ids.to(model.device)
output_ids = model.generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
)
response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return response
# ---------------------------
# GRADIO INTERFACE WITH TABS
# ---------------------------
with gr.Blocks(title="Multi-Modal Playground") as demo:
gr.Markdown("# Multi-Modal Playground")
with gr.Tab("Image Gen LoRA"):
gr.Markdown("## Generate Images using SDXL + LoRA")
with gr.Row():
prompt_img = gr.Textbox(label="Prompt", placeholder="Enter your image prompt here")
negative_prompt_img = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt (optional)", lines=2)
with gr.Row():
use_negative = gr.Checkbox(label="Use Negative Prompt", value=True)
seed_img = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width_img = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024)
height_img = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024)
with gr.Row():
guidance_scale_img = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0)
with gr.Row():
style_selection = gr.Radio(choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Quality Style")
lora_selection = gr.Dropdown(choices=list(LORA_OPTIONS.keys()), value="Realism (face/character)πŸ‘¦πŸ»", label="LoRA Selection")
run_img = gr.Button("Generate Image")
gallery = gr.Gallery(label="Generated Images", columns=1).style(full_width=True)
output_seed = gr.Number(label="Seed Used")
run_img.click(
generate_image_lora,
inputs=[prompt_img, negative_prompt_img, use_negative, seed_img, width_img, height_img, guidance_scale_img,
randomize_seed, style_selection, lora_selection],
outputs=[gallery, output_seed]
)
with gr.Tab("Qwen 2 VL OCR"):
gr.Markdown("## Extract and Generate Text from Images (OCR)")
with gr.Row():
prompt_ocr = gr.Textbox(label="OCR Prompt", placeholder="Enter instructions for OCR/text extraction")
file_ocr = gr.File(label="Upload Image", file_types=["image"], file_count="multiple")
run_ocr = gr.Button("Run OCR")
output_ocr = gr.Textbox(label="OCR Output")
run_ocr.click(
qwen2vl_ocr_generate,
inputs=[prompt_ocr, file_ocr],
outputs=output_ocr
)
with gr.Tab("Chat Interface"):
gr.Markdown("## Chat with the Text-Only Model")
chat_input = gr.Textbox(label="Enter your message", placeholder="Say something...")
max_tokens_chat = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS)
temperature_chat = gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6)
top_p_chat = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9)
top_k_chat = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50)
rep_penalty_chat = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2)
run_chat = gr.Button("Send")
chat_output = gr.Textbox(label="Response")
run_chat.click(
chat_generate,
inputs=[chat_input, max_tokens_chat, temperature_chat, top_p_chat, top_k_chat, rep_penalty_chat],
outputs=chat_output
)
gr.Markdown("**Adjust parameters in each tab as needed.**")
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)