Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
import re | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import edge_tts | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
) | |
from transformers.image_utils import load_image | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
DESCRIPTION = """ | |
# SDXL LoRA DLC 🎃 | |
""" | |
css = ''' | |
h1 { | |
text-align: center; | |
display: block; | |
} | |
#duplicate-button { | |
margin: auto; | |
color: #fff; | |
background: #1565c0; | |
border-radius: 100vh; | |
} | |
''' | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
# ----------------------- | |
# Progress Bar Helper | |
# ----------------------- | |
def progress_bar_html(label: str) -> str: | |
""" | |
Returns an HTML snippet for a thin progress bar with a label. | |
The progress bar is styled as a dark red animated bar. | |
""" | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #DDA0DD; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #FF00FF; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
# ----------------------- | |
# Text Generation Setup | |
# ----------------------- | |
model_id = "prithivMLmods/FastThink-0.5B-Tiny" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
model.eval() | |
TTS_VOICES = [ | |
"en-US-JennyNeural", # @tts1 | |
"en-US-GuyNeural", # @tts2 | |
] | |
# ----------------------- | |
# Multimodal OCR Setup | |
# ----------------------- | |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"): | |
"""Convert text to speech using Edge TTS and save as MP3""" | |
communicate = edge_tts.Communicate(text, voice) | |
await communicate.save(output_file) | |
return output_file | |
def clean_chat_history(chat_history): | |
""" | |
Filter out any chat entries whose "content" is not a string. | |
""" | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
# ----------------------- | |
# Stable Diffusion Image Generation Setup | |
# ----------------------- | |
MAX_SEED = np.iinfo(np.int32).max | |
USE_TORCH_COMPILE = False | |
ENABLE_CPU_OFFLOAD = False | |
if torch.cuda.is_available(): | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
) | |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
# LoRA options with one example for each. | |
LORA_OPTIONS = { | |
"Realism": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"), | |
"Pixar": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"), | |
"Photoshoot": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"), | |
"Clothing": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"), | |
"Interior": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"), | |
"Fashion": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"), | |
"Minimalistic": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"), | |
"Modern": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"), | |
"Animaliea": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"), | |
"Wallpaper": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"), | |
"Cars": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"), | |
"PencilArt": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"), | |
"ArtMinimalistic": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"), | |
} | |
# Load all LoRA weights | |
for model_name, weight_name, adapter_name in LORA_OPTIONS.values(): | |
pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name) | |
pipe.to("cuda") | |
else: | |
pipe = StableDiffusionXLPipeline.from_pretrained( | |
"SG161222/RealVisXL_V4.0_Lightning", | |
torch_dtype=torch.float32, | |
use_safetensors=True, | |
).to(device) | |
def save_image(img: Image.Image) -> str: | |
"""Save a PIL image with a unique filename and return the path.""" | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def generate_image( | |
prompt: str, | |
negative_prompt: str = "", | |
seed: int = 0, | |
width: int = 1024, | |
height: int = 1024, | |
guidance_scale: float = 3.0, | |
randomize_seed: bool = True, | |
lora_model: str = "Realism", | |
progress=gr.Progress(track_tqdm=True), | |
): | |
seed = int(randomize_seed_fn(seed, randomize_seed)) | |
effective_negative_prompt = negative_prompt # Use provided negative prompt if any | |
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model] | |
pipe.set_adapters(adapter_name) | |
outputs = pipe( | |
prompt=prompt, | |
negative_prompt=effective_negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=28, | |
num_images_per_prompt=1, | |
cross_attention_kwargs={"scale": 0.65}, | |
output_type="pil", | |
) | |
images = outputs.images | |
image_paths = [save_image(img) for img in images] | |
return image_paths, seed | |
# ----------------------- | |
# Main Chat/Generation Function | |
# ----------------------- | |
def generate( | |
input_dict: dict, | |
chat_history: list[dict], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
): | |
""" | |
Generates chatbot responses with support for multimodal input, TTS, and image generation. | |
Special commands: | |
- "@tts1" or "@tts2": triggers text-to-speech. | |
- "@<lora_command>": triggers image generation using the new LoRA pipeline. | |
Available commands (case-insensitive): @realism, @pixar, @photoshoot, @clothing, @interior, @fashion, | |
@minimalistic, @modern, @animaliea, @wallpaper, @cars, @pencilart, @artminimalistic. | |
""" | |
text = input_dict["text"] | |
files = input_dict.get("files", []) | |
# Check for image generation command based on LoRA tags. | |
lora_mapping = { key.lower(): key for key in LORA_OPTIONS } | |
for key_lower, key in lora_mapping.items(): | |
command_tag = "@" + key_lower | |
if text.strip().lower().startswith(command_tag): | |
prompt_text = text.strip()[len(command_tag):].strip() | |
yield progress_bar_html(f"Processing Image Generation ({key} style)") | |
image_paths, used_seed = generate_image( | |
prompt=prompt_text, | |
negative_prompt="", | |
seed=1, | |
width=1024, | |
height=1024, | |
guidance_scale=3, | |
randomize_seed=True, | |
lora_model=key, | |
) | |
yield progress_bar_html("Finalizing Image Generation") | |
yield gr.Image(image_paths[0]) | |
return | |
# Check for TTS command (@tts1 or @tts2) | |
tts_prefix = "@tts" | |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3)) | |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None) | |
if is_tts and voice_index: | |
voice = TTS_VOICES[voice_index - 1] | |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip() | |
conversation = [{"role": "user", "content": text}] | |
else: | |
voice = None | |
text = text.replace(tts_prefix, "").strip() | |
conversation = clean_chat_history(chat_history) | |
conversation.append({"role": "user", "content": text}) | |
if files: | |
if len(files) > 1: | |
images = [load_image(image) for image in files] | |
elif len(files) == 1: | |
images = [load_image(files[0])] | |
else: | |
images = [] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": image} for image in images], | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Qwen2VL Ocr") | |
for new_text in streamer: | |
buffer += new_text | |
buffer = buffer.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
else: | |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
for new_text in streamer: | |
outputs.append(new_text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
yield final_response | |
if is_tts and voice: | |
output_file = asyncio.run(text_to_speech(final_response, voice)) | |
yield gr.Audio(output_file, autoplay=True) | |
# ----------------------- | |
# Gradio Chat Interface | |
# ----------------------- | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
examples=[ | |
['@realism Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic'], | |
["@pixar A young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background, ultra detailed, 1 man"], | |
["@realism A futuristic cityscape with neon lights"], | |
["@photoshoot A portrait of a person with dramatic lighting"], | |
[{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
["Python Program for Array Rotation"], | |
["@tts1 Who is Nikola Tesla, and why did he die?"], | |
["@clothing Fashionable streetwear in an urban environment"], | |
["@interior A modern living room interior with minimalist design"], | |
["@fashion A runway model in haute couture"], | |
["@minimalistic A simple and elegant design of a serene landscape"], | |
["@modern A contemporary art piece with abstract geometric shapes"], | |
["@animaliea A cute animal portrait with vibrant colors"], | |
["@wallpaper A scenic mountain range perfect for a desktop wallpaper"], | |
["@cars A sleek sports car cruising on a city street"], | |
["@pencilart A detailed pencil sketch of a historic building"], | |
["@artminimalistic An artistic minimalist composition with subtle tones"], | |
["@tts2 What causes rainbows to form?"], | |
], | |
cache_examples=False, | |
type="messages", | |
description=DESCRIPTION, | |
css=css, | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple", placeholder="default [text, vision] , scroll down examples to explore more art styles"), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=30).launch(ssr_mode=False, share=True) |