Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import uuid
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
7 |
-
import re
|
8 |
from threading import Thread
|
9 |
|
10 |
import gradio as gr
|
@@ -13,6 +12,7 @@ import torch
|
|
13 |
import numpy as np
|
14 |
from PIL import Image
|
15 |
import edge_tts
|
|
|
16 |
|
17 |
from transformers import (
|
18 |
AutoModelForCausalLM,
|
@@ -24,56 +24,15 @@ from transformers import (
|
|
24 |
from transformers.image_utils import load_image
|
25 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
26 |
|
27 |
-
|
28 |
-
# Gen Vision 🎃
|
29 |
-
"""
|
30 |
-
|
31 |
-
css = '''
|
32 |
-
h1 {
|
33 |
-
text-align: center;
|
34 |
-
display: block;
|
35 |
-
}
|
36 |
-
|
37 |
-
#duplicate-button {
|
38 |
-
margin: auto;
|
39 |
-
color: #fff;
|
40 |
-
background: #1565c0;
|
41 |
-
border-radius: 100vh;
|
42 |
-
}
|
43 |
-
'''
|
44 |
-
|
45 |
MAX_MAX_NEW_TOKENS = 2048
|
46 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
47 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
|
48 |
|
49 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
50 |
|
51 |
-
#
|
52 |
-
# Progress Bar Helper
|
53 |
-
# -----------------------
|
54 |
-
def progress_bar_html(label: str) -> str:
|
55 |
-
"""
|
56 |
-
Returns an HTML snippet for a thin progress bar with a label.
|
57 |
-
The progress bar is styled as a dark red animated bar.
|
58 |
-
"""
|
59 |
-
return f'''
|
60 |
-
<div style="display: flex; align-items: center;">
|
61 |
-
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
62 |
-
<div style="width: 110px; height: 5px; background-color: #DDA0DD; border-radius: 2px; overflow: hidden;">
|
63 |
-
<div style="width: 100%; height: 100%; background-color: #FF00FF; animation: loading 1.5s linear infinite;"></div>
|
64 |
-
</div>
|
65 |
-
</div>
|
66 |
-
<style>
|
67 |
-
@keyframes loading {{
|
68 |
-
0% {{ transform: translateX(-100%); }}
|
69 |
-
100% {{ transform: translateX(100%); }}
|
70 |
-
}}
|
71 |
-
</style>
|
72 |
-
'''
|
73 |
-
|
74 |
-
# -----------------------
|
75 |
-
# Text Generation Setup
|
76 |
-
# -----------------------
|
77 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
78 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
79 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -83,170 +42,217 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
83 |
)
|
84 |
model.eval()
|
85 |
|
|
|
86 |
TTS_VOICES = [
|
87 |
"en-US-JennyNeural", # @tts1
|
88 |
"en-US-GuyNeural", # @tts2
|
89 |
]
|
90 |
|
91 |
-
#
|
92 |
-
|
93 |
-
|
94 |
-
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct"
|
95 |
-
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
96 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
97 |
-
|
98 |
trust_remote_code=True,
|
99 |
torch_dtype=torch.float16
|
100 |
).to("cuda").eval()
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
def clean_chat_history(chat_history):
|
109 |
-
"""
|
110 |
-
Filter out any chat entries whose "content" is not a string.
|
111 |
-
"""
|
112 |
-
cleaned = []
|
113 |
-
for msg in chat_history:
|
114 |
-
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
115 |
-
cleaned.append(msg)
|
116 |
-
return cleaned
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
# LoRA options with one example for each.
|
135 |
-
LORA_OPTIONS = {
|
136 |
-
"Realism": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
|
137 |
-
"Pixar": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
|
138 |
-
"Photoshoot": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
|
139 |
-
"Clothing": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
|
140 |
-
"Interior": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
|
141 |
-
"Fashion": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
|
142 |
-
"Minimalistic": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
|
143 |
-
"Modern": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
|
144 |
-
"Animaliea": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
|
145 |
-
"Wallpaper": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
|
146 |
-
"Cars": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
|
147 |
-
"PencilArt": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
|
148 |
-
"ArtMinimalistic": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
|
149 |
-
}
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
pipe.to("cuda")
|
155 |
-
else:
|
156 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
157 |
-
"SG161222/RealVisXL_V4.0_Lightning",
|
158 |
-
torch_dtype=torch.float32,
|
159 |
-
use_safetensors=True,
|
160 |
-
).to(device)
|
161 |
|
162 |
def save_image(img: Image.Image) -> str:
|
163 |
-
"""Save a PIL image with a unique filename
|
164 |
unique_name = str(uuid.uuid4()) + ".png"
|
165 |
img.save(unique_name)
|
166 |
return unique_name
|
167 |
|
168 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
169 |
-
if randomize_seed
|
170 |
-
seed = random.randint(0, MAX_SEED)
|
171 |
-
return seed
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
)
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
-
#
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
def generate(
|
209 |
-
input_dict: dict,
|
210 |
-
chat_history: list[dict],
|
211 |
-
max_new_tokens: int = 1024,
|
212 |
-
temperature: float = 0.6,
|
213 |
-
top_p: float = 0.9,
|
214 |
-
top_k: int = 50,
|
215 |
-
repetition_penalty: float = 1.2,
|
216 |
-
):
|
217 |
-
"""
|
218 |
-
Generates chatbot responses with support for multimodal input, TTS, and image generation.
|
219 |
-
Special commands:
|
220 |
-
- "@tts1" or "@tts2": triggers text-to-speech.
|
221 |
-
- "@<lora_command>": triggers image generation using the new LoRA pipeline.
|
222 |
-
Available commands (case-insensitive): @realism, @pixar, @photoshoot, @clothing, @interior, @fashion,
|
223 |
-
@minimalistic, @modern, @animaliea, @wallpaper, @cars, @pencilart, @artminimalistic.
|
224 |
-
"""
|
225 |
text = input_dict["text"]
|
226 |
files = input_dict.get("files", [])
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
tts_prefix = "@tts"
|
251 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
252 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
@@ -260,40 +266,31 @@ def generate(
|
|
260 |
text = text.replace(tts_prefix, "").strip()
|
261 |
conversation = clean_chat_history(chat_history)
|
262 |
conversation.append({"role": "user", "content": text})
|
263 |
-
|
264 |
if files:
|
265 |
-
|
266 |
-
|
267 |
-
elif len(files) == 1:
|
268 |
-
images = [load_image(files[0])]
|
269 |
-
else:
|
270 |
-
images = []
|
271 |
messages = [{
|
272 |
"role": "user",
|
273 |
-
"content": [
|
274 |
-
*[{"type": "image", "image": image} for image in images],
|
275 |
-
{"type": "text", "text": text},
|
276 |
-
]
|
277 |
}]
|
278 |
-
|
279 |
-
inputs = processor(text=[
|
280 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
281 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
282 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
283 |
thread.start()
|
284 |
-
|
285 |
buffer = ""
|
286 |
-
yield progress_bar_html("
|
287 |
for new_text in streamer:
|
288 |
-
buffer += new_text
|
289 |
-
buffer = buffer.replace("<|im_end|>", "")
|
290 |
time.sleep(0.01)
|
291 |
yield buffer
|
292 |
else:
|
293 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
294 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
295 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
296 |
-
gr.Warning(f"Trimmed input
|
297 |
input_ids = input_ids.to(model.device)
|
298 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
299 |
generation_kwargs = {
|
@@ -309,60 +306,164 @@ def generate(
|
|
309 |
}
|
310 |
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
311 |
t.start()
|
312 |
-
|
313 |
outputs = []
|
|
|
314 |
for new_text in streamer:
|
315 |
outputs.append(new_text)
|
316 |
yield "".join(outputs)
|
317 |
-
|
318 |
final_response = "".join(outputs)
|
319 |
yield final_response
|
320 |
-
|
321 |
if is_tts and voice:
|
322 |
-
output_file =
|
323 |
-
yield gr.Audio(output_file
|
324 |
|
325 |
-
#
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
["
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
["
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
if __name__ == "__main__":
|
368 |
-
demo.queue(max_size=
|
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
|
|
7 |
from threading import Thread
|
8 |
|
9 |
import gradio as gr
|
|
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
import edge_tts
|
15 |
+
import cv2
|
16 |
|
17 |
from transformers import (
|
18 |
AutoModelForCausalLM,
|
|
|
24 |
from transformers.image_utils import load_image
|
25 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
26 |
|
27 |
+
# --------- Global Config and Model Loading ---------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
MAX_MAX_NEW_TOKENS = 2048
|
29 |
DEFAULT_MAX_NEW_TOKENS = 1024
|
30 |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
31 |
+
MAX_SEED = np.iinfo(np.int32).max
|
32 |
|
33 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
34 |
|
35 |
+
# For text-only generation (chat)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
37 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
38 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
42 |
)
|
43 |
model.eval()
|
44 |
|
45 |
+
# For TTS
|
46 |
TTS_VOICES = [
|
47 |
"en-US-JennyNeural", # @tts1
|
48 |
"en-US-GuyNeural", # @tts2
|
49 |
]
|
50 |
|
51 |
+
# For multimodal Qwen2VL (OCR / video/text)
|
52 |
+
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
53 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True)
|
|
|
|
|
54 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
55 |
+
MODEL_ID_QWEN,
|
56 |
trust_remote_code=True,
|
57 |
torch_dtype=torch.float16
|
58 |
).to("cuda").eval()
|
59 |
|
60 |
+
# For SDXL Image Generation
|
61 |
+
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # Set your SDXL model repository path via env variable
|
62 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
63 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
64 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
67 |
+
MODEL_ID_SD,
|
68 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
69 |
+
use_safetensors=True,
|
70 |
+
add_watermarker=False,
|
71 |
+
).to(device)
|
72 |
+
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
73 |
+
if torch.cuda.is_available():
|
74 |
+
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
75 |
+
if USE_TORCH_COMPILE:
|
76 |
+
sd_pipe.compile()
|
77 |
+
if ENABLE_CPU_OFFLOAD:
|
78 |
+
sd_pipe.enable_model_cpu_offload()
|
79 |
|
80 |
+
# For SDXL quality styles and LoRA options (used in the image-gen tab)
|
81 |
+
LORA_OPTIONS = {
|
82 |
+
"Realism (face/character)👦🏻": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
|
83 |
+
"Pixar (art/toons)🙀": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
|
84 |
+
"Photoshoot (camera/film)📸": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
|
85 |
+
"Clothing (hoodies/pant/shirts)👔": ("prithivMLmods/Canopus-Clothing-Adp-LoRA", "Canopus-Dress-Clothing-LoRA.safetensors", "clth"),
|
86 |
+
"Interior Architecture (house/hotel)🏠": ("prithivMLmods/Canopus-Interior-Architecture-0.1", "Canopus-Interior-Architecture-0.1δ.safetensors", "arch"),
|
87 |
+
"Fashion Product (wearing/usable)👜": ("prithivMLmods/Canopus-Fashion-Product-Dilation", "Canopus-Fashion-Product-Dilation.safetensors", "fashion"),
|
88 |
+
"Minimalistic Image (minimal/detailed)🏞️": ("prithivMLmods/Pegasi-Minimalist-Image-Style", "Pegasi-Minimalist-Image-Style.safetensors", "minimalist"),
|
89 |
+
"Modern Clothing (trend/new)👕": ("prithivMLmods/Canopus-Modern-Clothing-Design", "Canopus-Modern-Clothing-Design.safetensors", "mdrnclth"),
|
90 |
+
"Animaliea (farm/wild)🫎": ("prithivMLmods/Canopus-Animaliea-Artism", "Canopus-Animaliea-Artism.safetensors", "Animaliea"),
|
91 |
+
"Liquid Wallpaper (minimal/illustration)🖼️": ("prithivMLmods/Canopus-Liquid-Wallpaper-Art", "Canopus-Liquid-Wallpaper-Minimalize-LoRA.safetensors", "liquid"),
|
92 |
+
"Canes Cars (realistic/futurecars)🚘": ("prithivMLmods/Canes-Cars-Model-LoRA", "Canes-Cars-Model-LoRA.safetensors", "car"),
|
93 |
+
"Pencil Art (characteristic/creative)✏️": ("prithivMLmods/Canopus-Pencil-Art-LoRA", "Canopus-Pencil-Art-LoRA.safetensors", "Pencil Art"),
|
94 |
+
"Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
|
95 |
+
}
|
96 |
+
style_list = [
|
97 |
+
{
|
98 |
+
"name": "3840 x 2160",
|
99 |
+
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
100 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"name": "2560 x 1440",
|
104 |
+
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
105 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"name": "HD+",
|
109 |
+
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
110 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"name": "Style Zero",
|
114 |
+
"prompt": "{prompt}",
|
115 |
+
"negative_prompt": "",
|
116 |
+
},
|
117 |
+
]
|
118 |
+
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
119 |
+
DEFAULT_STYLE_NAME = "3840 x 2160"
|
120 |
+
STYLE_NAMES = list(styles.keys())
|
121 |
|
122 |
+
# --------- Utility Functions ---------
|
123 |
+
def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
124 |
+
"""Convert text to speech using Edge TTS and save as MP3"""
|
125 |
+
async def run_tts():
|
126 |
+
communicate = edge_tts.Communicate(text, voice)
|
127 |
+
await communicate.save(output_file)
|
128 |
+
return output_file
|
129 |
+
return asyncio.run(run_tts())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
+
def clean_chat_history(chat_history):
|
132 |
+
"""Remove non-string content from the chat history."""
|
133 |
+
return [msg for msg in chat_history if isinstance(msg, dict) and isinstance(msg.get("content"), str)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
|
135 |
def save_image(img: Image.Image) -> str:
|
136 |
+
"""Save a PIL image to a file with a unique filename."""
|
137 |
unique_name = str(uuid.uuid4()) + ".png"
|
138 |
img.save(unique_name)
|
139 |
return unique_name
|
140 |
|
141 |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
142 |
+
return random.randint(0, MAX_SEED) if randomize_seed else seed
|
|
|
|
|
143 |
|
144 |
+
def progress_bar_html(label: str) -> str:
|
145 |
+
"""Return an HTML snippet for a progress bar."""
|
146 |
+
return f'''
|
147 |
+
<div style="display: flex; align-items: center;">
|
148 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
149 |
+
<div style="width: 110px; height: 5px; background-color: #FFF0F5; border-radius: 2px; overflow: hidden;">
|
150 |
+
<div style="width: 100%; height: 100%; background-color: #FF69B4; animation: loading 1.5s linear infinite;"></div>
|
151 |
+
</div>
|
152 |
+
</div>
|
153 |
+
<style>
|
154 |
+
@keyframes loading {{
|
155 |
+
0% {{ transform: translateX(-100%); }}
|
156 |
+
100% {{ transform: translateX(100%); }}
|
157 |
+
}}
|
158 |
+
</style>
|
159 |
+
'''
|
160 |
+
|
161 |
+
def downsample_video(video_path):
|
162 |
+
"""Extract 10 evenly spaced frames from a video."""
|
163 |
+
vidcap = cv2.VideoCapture(video_path)
|
164 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
165 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
166 |
+
frames = []
|
167 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
168 |
+
for i in frame_indices:
|
169 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
170 |
+
success, image = vidcap.read()
|
171 |
+
if success:
|
172 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
173 |
+
pil_image = Image.fromarray(image)
|
174 |
+
timestamp = round(i / fps, 2)
|
175 |
+
frames.append((pil_image, timestamp))
|
176 |
+
vidcap.release()
|
177 |
+
return frames
|
178 |
+
|
179 |
+
def apply_style(style_name: str, positive: str, negative: str = ""):
|
180 |
+
"""Apply a chosen quality style to the prompt."""
|
181 |
+
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
182 |
+
return p.replace("{prompt}", positive), n + negative
|
183 |
|
184 |
+
# --------- Tab 1: Chat Interface (Multimodal) ---------
|
185 |
+
def chat_generate(input_dict: dict, chat_history: list,
|
186 |
+
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
|
187 |
+
temperature: float = 0.6, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
text = input_dict["text"]
|
189 |
files = input_dict.get("files", [])
|
190 |
+
lower_text = text.strip().lower()
|
191 |
+
|
192 |
+
# If image generation command
|
193 |
+
if lower_text.startswith("@image"):
|
194 |
+
prompt = text[len("@image"):].strip()
|
195 |
+
yield progress_bar_html("Generating Image")
|
196 |
+
image_paths, used_seed = generate_image_fn(
|
197 |
+
prompt=prompt,
|
198 |
+
negative_prompt="",
|
199 |
+
use_negative_prompt=False,
|
200 |
+
seed=1,
|
201 |
+
width=1024,
|
202 |
+
height=1024,
|
203 |
+
guidance_scale=3,
|
204 |
+
num_inference_steps=25,
|
205 |
+
randomize_seed=True,
|
206 |
+
use_resolution_binning=True,
|
207 |
+
num_images=1,
|
208 |
+
)
|
209 |
+
yield gr.Image.update(value=image_paths[0])
|
210 |
+
return
|
211 |
+
|
212 |
+
# If video inference command
|
213 |
+
if lower_text.startswith("@video-infer"):
|
214 |
+
prompt = text[len("@video-infer"):].strip()
|
215 |
+
if files:
|
216 |
+
video_path = files[0]
|
217 |
+
frames = downsample_video(video_path)
|
218 |
+
messages = [
|
219 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
220 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
221 |
+
]
|
222 |
+
for frame in frames:
|
223 |
+
image, timestamp = frame
|
224 |
+
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
225 |
+
image.save(image_path)
|
226 |
+
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
227 |
+
messages[1]["content"].append({"type": "image", "url": image_path})
|
228 |
+
else:
|
229 |
+
messages = [
|
230 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
231 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
232 |
+
]
|
233 |
+
inputs = processor.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt").to("cuda")
|
234 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
235 |
+
generation_kwargs = {
|
236 |
+
**inputs,
|
237 |
+
"streamer": streamer,
|
238 |
+
"max_new_tokens": max_new_tokens,
|
239 |
+
"do_sample": True,
|
240 |
+
"temperature": temperature,
|
241 |
+
"top_p": top_p,
|
242 |
+
"top_k": top_k,
|
243 |
+
"repetition_penalty": repetition_penalty,
|
244 |
+
}
|
245 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
246 |
+
thread.start()
|
247 |
+
buffer = ""
|
248 |
+
yield progress_bar_html("Processing video with Qwen2VL")
|
249 |
+
for new_text in streamer:
|
250 |
+
buffer += new_text.replace("<|im_end|>", "")
|
251 |
+
time.sleep(0.01)
|
252 |
+
yield buffer
|
253 |
+
return
|
254 |
+
|
255 |
+
# Check for TTS command
|
256 |
tts_prefix = "@tts"
|
257 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
258 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
266 |
text = text.replace(tts_prefix, "").strip()
|
267 |
conversation = clean_chat_history(chat_history)
|
268 |
conversation.append({"role": "user", "content": text})
|
269 |
+
|
270 |
if files:
|
271 |
+
# Handle multimodal chat with images
|
272 |
+
images = [load_image(f) for f in files]
|
|
|
|
|
|
|
|
|
273 |
messages = [{
|
274 |
"role": "user",
|
275 |
+
"content": [{"type": "image", "image": image} for image in images] + [{"type": "text", "text": text}]
|
|
|
|
|
|
|
276 |
}]
|
277 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
278 |
+
inputs = processor(text=[prompt_full], images=images, return_tensors="pt", padding=True).to("cuda")
|
279 |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
280 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
281 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
282 |
thread.start()
|
|
|
283 |
buffer = ""
|
284 |
+
yield progress_bar_html("Thinking...")
|
285 |
for new_text in streamer:
|
286 |
+
buffer += new_text.replace("<|im_end|>", "")
|
|
|
287 |
time.sleep(0.01)
|
288 |
yield buffer
|
289 |
else:
|
290 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
291 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
292 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
293 |
+
gr.Warning(f"Trimmed input as it exceeded {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
294 |
input_ids = input_ids.to(model.device)
|
295 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
296 |
generation_kwargs = {
|
|
|
306 |
}
|
307 |
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
308 |
t.start()
|
|
|
309 |
outputs = []
|
310 |
+
yield progress_bar_html("Processing...")
|
311 |
for new_text in streamer:
|
312 |
outputs.append(new_text)
|
313 |
yield "".join(outputs)
|
|
|
314 |
final_response = "".join(outputs)
|
315 |
yield final_response
|
|
|
316 |
if is_tts and voice:
|
317 |
+
output_file = text_to_speech(final_response, voice)
|
318 |
+
yield gr.Audio.update(value=output_file)
|
319 |
|
320 |
+
# Helper function for image generation (used in chat @image branch)
|
321 |
+
@spaces.GPU(duration=60, enable_queue=True)
|
322 |
+
def generate_image_fn(prompt: str, negative_prompt: str = "", use_negative_prompt: bool = False,
|
323 |
+
seed: int = 1, width: int = 1024, height: int = 1024,
|
324 |
+
guidance_scale: float = 3, num_inference_steps: int = 25,
|
325 |
+
randomize_seed: bool = False, use_resolution_binning: bool = True,
|
326 |
+
num_images: int = 1, progress=None):
|
327 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
328 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
329 |
+
options = {
|
330 |
+
"prompt": [prompt] * num_images,
|
331 |
+
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
332 |
+
"width": width,
|
333 |
+
"height": height,
|
334 |
+
"guidance_scale": guidance_scale,
|
335 |
+
"num_inference_steps": num_inference_steps,
|
336 |
+
"generator": generator,
|
337 |
+
"output_type": "pil",
|
338 |
+
}
|
339 |
+
if use_resolution_binning:
|
340 |
+
options["use_resolution_binning"] = True
|
341 |
+
|
342 |
+
images = []
|
343 |
+
for i in range(0, num_images, BATCH_SIZE):
|
344 |
+
batch_options = options.copy()
|
345 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
346 |
+
if batch_options.get("negative_prompt") is not None:
|
347 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
348 |
+
if device.type == "cuda":
|
349 |
+
with torch.autocast("cuda", dtype=torch.float16):
|
350 |
+
outputs = sd_pipe(**batch_options)
|
351 |
+
else:
|
352 |
+
outputs = sd_pipe(**batch_options)
|
353 |
+
images.extend(outputs.images)
|
354 |
+
image_paths = [save_image(img) for img in images]
|
355 |
+
return image_paths, seed
|
356 |
+
|
357 |
+
# --------- Tab 2: SDXL Image Generation ---------
|
358 |
+
@spaces.GPU(duration=180, enable_queue=True)
|
359 |
+
def sdxl_generate(prompt: str, negative_prompt: str = "", use_negative_prompt: bool = True,
|
360 |
+
seed: int = 0, width: int = 1024, height: int = 1024, guidance_scale: float = 3,
|
361 |
+
randomize_seed: bool = False, style_name: str = DEFAULT_STYLE_NAME,
|
362 |
+
lora_model: str = "Realism (face/character)👦🏻", progress=None):
|
363 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
364 |
+
positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
365 |
+
if not use_negative_prompt:
|
366 |
+
effective_negative_prompt = ""
|
367 |
+
model_name, weight_name, adapter_name = LORA_OPTIONS[lora_model]
|
368 |
+
# Set the adapter for the current generation
|
369 |
+
sd_pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
|
370 |
+
sd_pipe.set_adapters(adapter_name)
|
371 |
+
images = sd_pipe(
|
372 |
+
prompt=positive_prompt,
|
373 |
+
negative_prompt=effective_negative_prompt,
|
374 |
+
width=width,
|
375 |
+
height=height,
|
376 |
+
guidance_scale=guidance_scale,
|
377 |
+
num_inference_steps=20,
|
378 |
+
num_images_per_prompt=1,
|
379 |
+
cross_attention_kwargs={"scale": 0.65},
|
380 |
+
output_type="pil",
|
381 |
+
).images
|
382 |
+
image_paths = [save_image(img) for img in images]
|
383 |
+
return image_paths, seed
|
384 |
+
|
385 |
+
# --------- Tab 3: Qwen2VL OCR & Text Generation ---------
|
386 |
+
def qwen2vl_ocr_textgen(prompt: str, image_file):
|
387 |
+
if image_file is None:
|
388 |
+
return "Please upload an image."
|
389 |
+
# Load the image
|
390 |
+
image = load_image(image_file)
|
391 |
+
messages = [
|
392 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
393 |
+
{"role": "user", "content": [{"type": "text", "text": prompt}, {"type": "image", "image": image}]}
|
394 |
+
]
|
395 |
+
inputs = processor.apply_chat_template(messages, tokenize=True, add_generation_prompt=True,
|
396 |
+
return_dict=True, return_tensors="pt").to("cuda")
|
397 |
+
outputs = model_m.generate(
|
398 |
+
**inputs,
|
399 |
+
max_new_tokens=1024,
|
400 |
+
do_sample=True,
|
401 |
+
temperature=0.6,
|
402 |
+
top_p=0.9,
|
403 |
+
top_k=50,
|
404 |
+
repetition_penalty=1.2,
|
405 |
+
)
|
406 |
+
response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
407 |
+
return response
|
408 |
+
|
409 |
+
# --------- Building the Gradio Interface with Tabs ---------
|
410 |
+
with gr.Blocks(title="Combined Demo") as demo:
|
411 |
+
gr.Markdown("# Combined Demo: Chat, SDXL Image Gen & Qwen2VL OCR/TextGen")
|
412 |
+
with gr.Tabs():
|
413 |
+
# --- Tab 1: Chat Interface ---
|
414 |
+
with gr.Tab("Chat Interface"):
|
415 |
+
chat_interface = gr.ChatInterface(
|
416 |
+
fn=chat_generate,
|
417 |
+
additional_inputs=[
|
418 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
419 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
420 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
421 |
+
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
422 |
+
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
423 |
+
],
|
424 |
+
examples=[
|
425 |
+
["Write the Python Program for Array Rotation"],
|
426 |
+
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
427 |
+
[{"text": "@video-infer Describe the Ad", "files": ["examples/coca.mp4"]}],
|
428 |
+
["@image Chocolate dripping from a donut"],
|
429 |
+
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
430 |
+
],
|
431 |
+
cache_examples=False,
|
432 |
+
type="messages",
|
433 |
+
description="Use commands like **@image**, **@video-infer**, **@tts1**, or plain text.",
|
434 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple",
|
435 |
+
placeholder="Type your query (e.g., @tts1 for TTS, @image for image gen, etc.)"),
|
436 |
+
stop_btn="Stop Generation",
|
437 |
+
multimodal=True,
|
438 |
+
)
|
439 |
+
# --- Tab 2: SDXL Image Generation ---
|
440 |
+
with gr.Tab("SDXL Gen Image"):
|
441 |
+
with gr.Row():
|
442 |
+
prompt_in = gr.Textbox(label="Prompt", placeholder="Enter prompt for image generation")
|
443 |
+
negative_prompt_in = gr.Textbox(label="Negative prompt", placeholder="Enter negative prompt", lines=2)
|
444 |
+
with gr.Row():
|
445 |
+
seed_in = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
446 |
+
randomize_in = gr.Checkbox(label="Randomize seed", value=True)
|
447 |
+
with gr.Row():
|
448 |
+
width_in = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=1024)
|
449 |
+
height_in = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1024)
|
450 |
+
guidance_in = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0)
|
451 |
+
style_in = gr.Radio(choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME, label="Quality Style")
|
452 |
+
lora_in = gr.Dropdown(choices=list(LORA_OPTIONS.keys()), value="Realism (face/character)👦🏻", label="LoRA Selection")
|
453 |
+
run_button_img = gr.Button("Generate Image")
|
454 |
+
output_gallery = gr.Gallery(label="Generated Image", columns=1, preview=True)
|
455 |
+
seed_output = gr.Number(label="Seed used")
|
456 |
+
run_button_img.click(fn=sdxl_generate,
|
457 |
+
inputs=[prompt_in, negative_prompt_in, randomize_in, seed_in, width_in, height_in, guidance_in, randomize_in, style_in, lora_in],
|
458 |
+
outputs=[output_gallery, seed_output])
|
459 |
+
# --- Tab 3: Qwen2VL OCR & Text Generation ---
|
460 |
+
with gr.Tab("Qwen2VL OCR/TextGen"):
|
461 |
+
with gr.Row():
|
462 |
+
qwen_prompt = gr.Textbox(label="Prompt", placeholder="Enter prompt for OCR / text generation")
|
463 |
+
qwen_image = gr.Image(label="Upload Image", type="filepath")
|
464 |
+
run_button_qwen = gr.Button("Run Qwen2VL")
|
465 |
+
qwen_output = gr.Textbox(label="Output")
|
466 |
+
run_button_qwen.click(fn=qwen2vl_ocr_textgen, inputs=[qwen_prompt, qwen_image], outputs=qwen_output)
|
467 |
|
468 |
if __name__ == "__main__":
|
469 |
+
demo.queue(max_size=30).launch(share=True)
|