Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import random
|
3 |
import uuid
|
4 |
-
from typing import Tuple
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
@@ -9,38 +9,31 @@ import spaces
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
12 |
-
DESCRIPTIONz
|
|
|
13 |
"""
|
14 |
|
15 |
-
#
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
"RealVisXL V4.0 Lightning": "SG161222/RealVisXL_V4.0_Lightning",
|
18 |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
|
|
|
|
19 |
}
|
20 |
|
21 |
-
# Dictionary to cache pipelines
|
22 |
-
|
23 |
-
|
24 |
-
def save_image(img):
|
25 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
26 |
-
img.save(unique_name)
|
27 |
-
return unique_name
|
28 |
-
|
29 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
30 |
-
if randomize_seed:
|
31 |
-
seed = random.randint(0, MAX_SEED)
|
32 |
-
return seed
|
33 |
-
|
34 |
-
MAX_SEED = np.iinfo(np.int32).max
|
35 |
-
|
36 |
-
if not torch.cuda.is_available():
|
37 |
-
DESCRIPTIONz += "\n<p>⚠️Running on CPU, This may not work on CPU. If it runs for an extended time or if you encounter errors, try running it on a GPU by duplicating the space using @spaces.GPU(). +import spaces.📍</p>"
|
38 |
-
|
39 |
-
USE_TORCH_COMPILE = 0
|
40 |
-
ENABLE_CPU_OFFLOAD = 0
|
41 |
|
42 |
-
#
|
43 |
LORA_OPTIONS = {
|
|
|
44 |
"Realism (face/character)👦🏻": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
|
45 |
"Pixar (art/toons)🙀": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
|
46 |
"Photoshoot (camera/film)📸": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
|
@@ -56,60 +49,88 @@ LORA_OPTIONS = {
|
|
56 |
"Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
|
57 |
}
|
58 |
|
59 |
-
#
|
60 |
-
def get_pipeline(model_name):
|
61 |
-
if model_name not in pipelines:
|
62 |
-
pipelines[model_name] = StableDiffusionXLPipeline.from_pretrained(
|
63 |
-
MODEL_OPTIONS[model_name],
|
64 |
-
torch_dtype=torch.float16,
|
65 |
-
use_safetensors=True,
|
66 |
-
)
|
67 |
-
pipelines[model_name].scheduler = EulerAncestralDiscreteScheduler.from_config(pipelines[model_name].scheduler.config)
|
68 |
-
for lora_model_name, lora_weight_name, lora_adapter_name in LORA_OPTIONS.values():
|
69 |
-
pipelines[model_name].load_lora_weights(lora_model_name, weight_name=lora_weight_name, adapter_name=lora_adapter_name)
|
70 |
-
pipelines[model_name].to("cuda")
|
71 |
-
return pipelines[model_name]
|
72 |
-
|
73 |
style_list = [
|
74 |
{
|
75 |
"name": "3840 x 2160",
|
76 |
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
77 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
78 |
},
|
79 |
{
|
80 |
"name": "2560 x 1440",
|
81 |
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
82 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
83 |
},
|
84 |
{
|
85 |
"name": "HD+",
|
86 |
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
87 |
-
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly",
|
88 |
},
|
89 |
{
|
90 |
"name": "Style Zero",
|
91 |
"prompt": "{prompt}",
|
92 |
-
"negative_prompt": "",
|
93 |
},
|
94 |
]
|
95 |
-
|
96 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
97 |
-
|
98 |
-
DEFAULT_STYLE_NAME = "3840 x 2160"
|
99 |
STYLE_NAMES = list(styles.keys())
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
else:
|
105 |
-
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
negative = ""
|
109 |
-
return p.replace("{prompt}", positive), n + negative
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
@spaces.GPU(duration=180, enable_queue=True)
|
112 |
def generate(
|
|
|
113 |
prompt: str,
|
114 |
negative_prompt: str = "",
|
115 |
use_negative_prompt: bool = False,
|
@@ -117,88 +138,212 @@ def generate(
|
|
117 |
width: int = 1024,
|
118 |
height: int = 1024,
|
119 |
guidance_scale: float = 3,
|
|
|
120 |
randomize_seed: bool = False,
|
121 |
style_name: str = DEFAULT_STYLE_NAME,
|
122 |
-
|
123 |
-
base_model: str = "RealVisXL V4.0 Lightning",
|
124 |
progress=gr.Progress(track_tqdm=True),
|
125 |
):
|
126 |
-
|
127 |
-
|
128 |
-
positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt)
|
129 |
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
images = pipe(
|
138 |
prompt=positive_prompt,
|
139 |
negative_prompt=effective_negative_prompt,
|
140 |
width=width,
|
141 |
height=height,
|
142 |
guidance_scale=guidance_scale,
|
143 |
-
num_inference_steps=
|
|
|
144 |
num_images_per_prompt=1,
|
145 |
-
cross_attention_kwargs=
|
146 |
output_type="pil",
|
147 |
).images
|
|
|
148 |
image_paths = [save_image(img) for img in images]
|
|
|
149 |
return image_paths, seed
|
150 |
|
151 |
-
|
152 |
-
"Realism: Man in the style of dark beige and brown, uhd image, youthful protagonists, nonrepresentational ",
|
153 |
-
"Pixar: A young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background, ultra detailed, 1 man",
|
154 |
-
"Hoodie: Front view, capture a urban style, Superman Hoodie, technical materials, fabric small point label on text Blue theory, the design is minimal, with a raised collar, fabric is a Light yellow, low angle to capture the Hoodies form and detailing, f/5.6 to focus on the hoodies craftsmanship, solid grey background, studio light setting, with batman logo in the chest region of the t-shirt",
|
155 |
-
]
|
156 |
-
|
157 |
css = '''
|
158 |
-
.gradio-container{max-width:
|
159 |
h1{text-align:center}
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
162 |
}
|
|
|
|
|
|
|
|
|
163 |
'''
|
164 |
|
165 |
-
def load_predefined_images():
|
166 |
-
predefined_images = [
|
167 |
-
"assets/1.png",
|
168 |
-
"assets/2.png",
|
169 |
-
"assets/3.png",
|
170 |
-
"assets/4.png",
|
171 |
-
"assets/5.png",
|
172 |
-
"assets/6.png",
|
173 |
-
"assets/7.png",
|
174 |
-
"assets/8.png",
|
175 |
-
"assets/9.png",
|
176 |
-
]
|
177 |
-
return predefined_images
|
178 |
-
|
179 |
with gr.Blocks(css=css) as demo:
|
180 |
gr.Markdown(DESCRIPTIONz)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
with gr.Group():
|
182 |
with gr.Row():
|
183 |
prompt = gr.Text(
|
184 |
label="Prompt",
|
185 |
show_label=False,
|
186 |
-
max_lines=
|
187 |
-
placeholder="Enter your prompt
|
188 |
container=False,
|
|
|
189 |
)
|
190 |
-
run_button = gr.Button("
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
-
with gr.Accordion("Advanced options", open=False, visible=False):
|
194 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
195 |
negative_prompt = gr.Text(
|
196 |
-
label="Negative
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
visible=True,
|
202 |
)
|
203 |
seed = gr.Slider(
|
204 |
label="Seed",
|
@@ -206,67 +351,45 @@ with gr.Blocks(css=css) as demo:
|
|
206 |
maximum=MAX_SEED,
|
207 |
step=1,
|
208 |
value=0,
|
209 |
-
visible=True
|
|
|
210 |
)
|
211 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
212 |
|
213 |
-
with gr.Row(
|
214 |
width = gr.Slider(
|
215 |
label="Width",
|
216 |
minimum=512,
|
217 |
-
maximum=
|
218 |
-
step=
|
219 |
value=1024,
|
220 |
)
|
221 |
height = gr.Slider(
|
222 |
label="Height",
|
223 |
minimum=512,
|
224 |
-
maximum=
|
225 |
-
step=
|
226 |
value=1024,
|
227 |
)
|
228 |
|
229 |
with gr.Row():
|
230 |
guidance_scale = gr.Slider(
|
231 |
-
label="Guidance Scale",
|
232 |
-
minimum=0.
|
233 |
-
maximum=
|
234 |
step=0.1,
|
235 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
)
|
237 |
|
238 |
-
|
239 |
-
show_label=True,
|
240 |
-
container=True,
|
241 |
-
interactive=True,
|
242 |
-
choices=STYLE_NAMES,
|
243 |
-
value=DEFAULT_STYLE_NAME,
|
244 |
-
label="Quality Style",
|
245 |
-
)
|
246 |
-
|
247 |
-
# Add base model selection dropdown
|
248 |
-
with gr.Row():
|
249 |
-
base_model_choice = gr.Dropdown(
|
250 |
-
label="Base Model",
|
251 |
-
choices=list(MODEL_OPTIONS.keys()),
|
252 |
-
value="RealVisXL V4.0 Lightning",
|
253 |
-
)
|
254 |
-
|
255 |
-
with gr.Row(visible=True):
|
256 |
-
model_choice = gr.Dropdown(
|
257 |
-
label="LoRA Selection",
|
258 |
-
choices=list(LORA_OPTIONS.keys()),
|
259 |
-
value="Realism (face/character)👦🏻"
|
260 |
-
)
|
261 |
-
|
262 |
-
gr.Examples(
|
263 |
-
examples=examples,
|
264 |
-
inputs=prompt,
|
265 |
-
outputs=[result, seed],
|
266 |
-
fn=generate,
|
267 |
-
cache_examples=False,
|
268 |
-
)
|
269 |
|
|
|
270 |
use_negative_prompt.change(
|
271 |
fn=lambda x: gr.update(visible=x),
|
272 |
inputs=use_negative_prompt,
|
@@ -274,33 +397,54 @@ with gr.Blocks(css=css) as demo:
|
|
274 |
api_name=False,
|
275 |
)
|
276 |
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
fn=generate,
|
284 |
-
inputs=[
|
285 |
-
prompt,
|
286 |
-
negative_prompt,
|
287 |
-
use_negative_prompt,
|
288 |
-
seed,
|
289 |
-
width,
|
290 |
-
height,
|
291 |
-
guidance_scale,
|
292 |
-
randomize_seed,
|
293 |
-
style_selection,
|
294 |
-
model_choice,
|
295 |
-
base_model_choice,
|
296 |
-
],
|
297 |
-
outputs=[result, seed],
|
298 |
-
api_name="run",
|
299 |
)
|
300 |
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
305 |
if __name__ == "__main__":
|
306 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import random
|
3 |
import uuid
|
4 |
+
from typing import Tuple, Dict
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
12 |
+
DESCRIPTIONz= """## SDXL-LoRA-DLC ⚡
|
13 |
+
Select a base model, choose a LoRA, and generate images!
|
14 |
"""
|
15 |
|
16 |
+
# --- Constants ---
|
17 |
+
MAX_SEED = np.iinfo(np.int32).max
|
18 |
+
DEFAULT_STYLE_NAME = "3840 x 2160"
|
19 |
+
USE_TORCH_COMPILE = False # Set to True if you want to try torch compile (might be faster but requires compatible hardware/drivers)
|
20 |
+
ENABLE_CPU_OFFLOAD = False # Set to True to offload parts of the model to CPU (saves VRAM but slower)
|
21 |
+
|
22 |
+
# --- Model Definitions ---
|
23 |
+
# Dictionary mapping user-friendly names to Hugging Face model IDs
|
24 |
+
pipelines_info = {
|
25 |
"RealVisXL V4.0 Lightning": "SG161222/RealVisXL_V4.0_Lightning",
|
26 |
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
27 |
+
# Add more SDXL base models here if desired
|
28 |
+
# "Another SDXL Model": "stabilityai/stable-diffusion-xl-base-1.0", # Example
|
29 |
}
|
30 |
|
31 |
+
# Dictionary to cache loaded pipelines
|
32 |
+
loaded_pipelines: Dict[str, StableDiffusionXLPipeline] = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# --- LoRA Definitions ---
|
35 |
LORA_OPTIONS = {
|
36 |
+
# Name: (HuggingFace Repo ID, Weight Filename, Adapter Name)
|
37 |
"Realism (face/character)👦🏻": ("prithivMLmods/Canopus-Realism-LoRA", "Canopus-Realism-LoRA.safetensors", "rlms"),
|
38 |
"Pixar (art/toons)🙀": ("prithivMLmods/Canopus-Pixar-Art", "Canopus-Pixar-Art.safetensors", "pixar"),
|
39 |
"Photoshoot (camera/film)📸": ("prithivMLmods/Canopus-Photo-Shoot-Mini-LoRA", "Canopus-Photo-Shoot-Mini-LoRA.safetensors", "photo"),
|
|
|
49 |
"Art Minimalistic (paint/semireal)🎨": ("prithivMLmods/Canopus-Art-Medium-LoRA", "Canopus-Art-Medium-LoRA.safetensors", "mdm"),
|
50 |
}
|
51 |
|
52 |
+
# --- Style Definitions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
style_list = [
|
54 |
{
|
55 |
"name": "3840 x 2160",
|
56 |
"prompt": "hyper-realistic 8K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
57 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, bad anatomy, worst quality, low quality",
|
58 |
},
|
59 |
{
|
60 |
"name": "2560 x 1440",
|
61 |
"prompt": "hyper-realistic 4K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
62 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, bad anatomy, worst quality, low quality",
|
63 |
},
|
64 |
{
|
65 |
"name": "HD+",
|
66 |
"prompt": "hyper-realistic 2K image of {prompt}. ultra-detailed, lifelike, high-resolution, sharp, vibrant colors, photorealistic",
|
67 |
+
"negative_prompt": "cartoonish, low resolution, blurry, simplistic, abstract, deformed, ugly, bad anatomy, worst quality, low quality",
|
68 |
},
|
69 |
{
|
70 |
"name": "Style Zero",
|
71 |
"prompt": "{prompt}",
|
72 |
+
"negative_prompt": "worst quality, low quality", # Added basic negative prompt
|
73 |
},
|
74 |
]
|
|
|
75 |
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
|
|
|
|
76 |
STYLE_NAMES = list(styles.keys())
|
77 |
|
78 |
+
# --- Utility Functions ---
|
79 |
+
def save_image(img):
|
80 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
81 |
+
img.save(unique_name)
|
82 |
+
return unique_name
|
83 |
+
|
84 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
85 |
+
if randomize_seed:
|
86 |
+
seed = random.randint(0, MAX_SEED)
|
87 |
+
return seed
|
88 |
+
|
89 |
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
|
90 |
+
# Get the base style prompt and negative prompt
|
91 |
+
base_p, base_n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
|
92 |
+
|
93 |
+
# Combine the base negative prompt with the user's negative prompt
|
94 |
+
# Ensure user's negative prompt is appended correctly
|
95 |
+
if negative and base_n:
|
96 |
+
combined_n = f"{base_n}, {negative}"
|
97 |
+
elif negative:
|
98 |
+
combined_n = negative
|
99 |
else:
|
100 |
+
combined_n = base_n
|
101 |
+
|
102 |
+
# Apply the positive prompt template
|
103 |
+
final_p = base_p.replace("{prompt}", positive)
|
104 |
|
105 |
+
return final_p, combined_n
|
|
|
|
|
106 |
|
107 |
+
def load_predefined_images():
|
108 |
+
# Ensure the assets directory and images exist
|
109 |
+
asset_dir = "assets"
|
110 |
+
image_files = [
|
111 |
+
"1.png", "2.png", "3.png",
|
112 |
+
"4.png", "5.png", "6.png",
|
113 |
+
"7.png", "8.png", "9.png",
|
114 |
+
]
|
115 |
+
predefined_images = []
|
116 |
+
if os.path.exists(asset_dir):
|
117 |
+
for img_file in image_files:
|
118 |
+
img_path = os.path.join(asset_dir, img_file)
|
119 |
+
if os.path.exists(img_path):
|
120 |
+
predefined_images.append(img_path)
|
121 |
+
else:
|
122 |
+
print(f"Warning: Predefined image not found: {img_path}")
|
123 |
+
else:
|
124 |
+
print(f"Warning: Asset directory not found: {asset_dir}")
|
125 |
+
# If no images were found, return None or an empty list
|
126 |
+
# to avoid errors in gr.Gallery
|
127 |
+
return predefined_images if predefined_images else None
|
128 |
+
|
129 |
+
|
130 |
+
# --- Core Generation Function ---
|
131 |
@spaces.GPU(duration=180, enable_queue=True)
|
132 |
def generate(
|
133 |
+
selected_base_model_name: str, # New input for base model selection
|
134 |
prompt: str,
|
135 |
negative_prompt: str = "",
|
136 |
use_negative_prompt: bool = False,
|
|
|
138 |
width: int = 1024,
|
139 |
height: int = 1024,
|
140 |
guidance_scale: float = 3,
|
141 |
+
num_inference_steps: int = 4, # Lightning models use fewer steps
|
142 |
randomize_seed: bool = False,
|
143 |
style_name: str = DEFAULT_STYLE_NAME,
|
144 |
+
lora_choice: str = "Realism (face/character)👦🏻",
|
|
|
145 |
progress=gr.Progress(track_tqdm=True),
|
146 |
):
|
147 |
+
if not torch.cuda.is_available():
|
148 |
+
raise gr.Error("GPU not available. This Space requires a GPU to run.")
|
|
|
149 |
|
150 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
151 |
+
torch.manual_seed(seed) # Ensure reproducibility if seed is fixed
|
152 |
|
153 |
+
# --- Pipeline Loading and Caching ---
|
154 |
+
pipe = None
|
155 |
+
if selected_base_model_name in loaded_pipelines:
|
156 |
+
print(f"Using cached pipeline: {selected_base_model_name}")
|
157 |
+
pipe = loaded_pipelines[selected_base_model_name]
|
158 |
+
else:
|
159 |
+
print(f"Loading pipeline: {selected_base_model_name}")
|
160 |
+
model_id = pipelines_info[selected_base_model_name]
|
161 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
162 |
+
model_id,
|
163 |
+
torch_dtype=torch.float16,
|
164 |
+
use_safetensors=True,
|
165 |
+
variant="fp16" if torch.cuda.is_available() else None # Use fp16 variant if available on GPU
|
166 |
+
)
|
167 |
|
168 |
+
# Apply optimizations based on flags
|
169 |
+
if ENABLE_CPU_OFFLOAD:
|
170 |
+
print("Enabling CPU Offload")
|
171 |
+
pipe.enable_model_cpu_offload()
|
172 |
+
else:
|
173 |
+
pipe.to("cuda") # Default: move entire pipeline to GPU
|
174 |
+
|
175 |
+
# Configure scheduler (important for Lightning models)
|
176 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
177 |
+
|
178 |
+
# Load ALL LoRAs onto this newly loaded pipeline instance
|
179 |
+
print(f"Loading LoRAs for {selected_base_model_name}...")
|
180 |
+
for lora_name, (model_repo, weight_file, adapter_tag) in LORA_OPTIONS.items():
|
181 |
+
try:
|
182 |
+
print(f" Loading LoRA: {lora_name} ({adapter_tag})")
|
183 |
+
pipe.load_lora_weights(model_repo, weight_name=weight_file, adapter_name=adapter_tag)
|
184 |
+
except Exception as e:
|
185 |
+
print(f" Failed to load LoRA {lora_name}: {e}")
|
186 |
+
# Optionally raise an error or continue without this LoRA
|
187 |
+
# raise gr.Error(f"Failed to load LoRA {lora_name}. Check repo/file names.")
|
188 |
+
|
189 |
+
if USE_TORCH_COMPILE:
|
190 |
+
print("Attempting to compile UNet (may take time)...")
|
191 |
+
try:
|
192 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
193 |
+
print("UNet compiled successfully.")
|
194 |
+
except Exception as e:
|
195 |
+
print(f"Torch compile failed: {e}. Running without compilation.")
|
196 |
+
|
197 |
+
# Cache the fully loaded and configured pipeline
|
198 |
+
loaded_pipelines[selected_base_model_name] = pipe
|
199 |
+
print(f"Pipeline {selected_base_model_name} loaded and cached.")
|
200 |
+
|
201 |
+
# --- Prompt Styling ---
|
202 |
+
positive_prompt, effective_negative_prompt = apply_style(style_name, prompt, negative_prompt if use_negative_prompt else "")
|
203 |
+
|
204 |
+
# --- LoRA Selection ---
|
205 |
+
if lora_choice not in LORA_OPTIONS:
|
206 |
+
raise gr.Error(f"Selected LoRA '{lora_choice}' not found in options.")
|
207 |
+
|
208 |
+
_lora_repo, _lora_weight, lora_adapter_name = LORA_OPTIONS[lora_choice]
|
209 |
+
print(f"Activating LoRA: {lora_choice} (Adapter: {lora_adapter_name})")
|
210 |
+
pipe.set_adapters(lora_adapter_name)
|
211 |
+
# Note: LoRA weight/scale is often handled within the pipeline or during loading.
|
212 |
+
# If you need adjustable LoRA scale, you might need `add_weighted_adapter` or similar.
|
213 |
+
# For simplicity here, we assume the default scale is used.
|
214 |
+
# cross_attention_kwargs={"scale": 0.8} # Example if you need to set scale explicitly
|
215 |
+
|
216 |
+
# --- Image Generation ---
|
217 |
+
print("Starting image generation...")
|
218 |
+
generator = torch.Generator("cuda").manual_seed(seed)
|
219 |
images = pipe(
|
220 |
prompt=positive_prompt,
|
221 |
negative_prompt=effective_negative_prompt,
|
222 |
width=width,
|
223 |
height=height,
|
224 |
guidance_scale=guidance_scale,
|
225 |
+
num_inference_steps=num_inference_steps, # Use steps suitable for Lightning
|
226 |
+
generator=generator,
|
227 |
num_images_per_prompt=1,
|
228 |
+
# cross_attention_kwargs=cross_attention_kwargs, # Add if scale needed
|
229 |
output_type="pil",
|
230 |
).images
|
231 |
+
|
232 |
image_paths = [save_image(img) for img in images]
|
233 |
+
print("Image generation complete.")
|
234 |
return image_paths, seed
|
235 |
|
236 |
+
# --- Gradio UI ---
|
|
|
|
|
|
|
|
|
|
|
237 |
css = '''
|
238 |
+
.gradio-container{max-width: 860px !important; margin: auto;}
|
239 |
h1{text-align:center}
|
240 |
+
.gr-prose { text-align: center; }
|
241 |
+
#model-select-row { justify-content: center; } /* Center dropdowns */
|
242 |
+
/* Make gallery taller */
|
243 |
+
#result_gallery .h-\[400px\] {
|
244 |
+
height: 600px !important; /* Adjust height as needed */
|
245 |
}
|
246 |
+
#predefined_gallery .h-\[400px\] {
|
247 |
+
height: 300px !important; /* Adjust height as needed */
|
248 |
+
}
|
249 |
+
footer { visibility: hidden }
|
250 |
'''
|
251 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
with gr.Blocks(css=css) as demo:
|
253 |
gr.Markdown(DESCRIPTIONz)
|
254 |
+
|
255 |
+
with gr.Row(elem_id="model-select-row"):
|
256 |
+
model_selector = gr.Dropdown(
|
257 |
+
label="Select Base Model",
|
258 |
+
choices=list(pipelines_info.keys()),
|
259 |
+
value=list(pipelines_info.keys())[0], # Default to the first model
|
260 |
+
scale=1
|
261 |
+
)
|
262 |
+
model_choice = gr.Dropdown(
|
263 |
+
label="Select LoRA Style",
|
264 |
+
choices=list(LORA_OPTIONS.keys()),
|
265 |
+
value="Realism (face/character)👦🏻", # Default LoRA
|
266 |
+
scale=1
|
267 |
+
)
|
268 |
+
|
269 |
with gr.Group():
|
270 |
with gr.Row():
|
271 |
prompt = gr.Text(
|
272 |
label="Prompt",
|
273 |
show_label=False,
|
274 |
+
max_lines=2, # Allow slightly more room for prompt
|
275 |
+
placeholder="Enter your prompt (e.g., 'Astronaut riding a horse')",
|
276 |
container=False,
|
277 |
+
scale=5, # Make prompt input wider
|
278 |
)
|
279 |
+
run_button = gr.Button("Generate", scale=1, variant="primary") # Make button stand out
|
280 |
+
|
281 |
+
# Use Tabs for Main Result and Examples/Gallery
|
282 |
+
with gr.Tabs():
|
283 |
+
with gr.TabItem("Result", id="result_tab"):
|
284 |
+
result = gr.Gallery(
|
285 |
+
label="Generated Image", elem_id="result_gallery",
|
286 |
+
columns=1, preview=True, show_label=False, height=600 # Make gallery taller
|
287 |
+
)
|
288 |
+
# Display the seed used for the generated image
|
289 |
+
used_seed = gr.Number(label="Seed Used", interactive=False)
|
290 |
+
|
291 |
+
with gr.TabItem("Examples & Predefined Gallery", id="examples_tab"):
|
292 |
+
gr.Markdown("### Prompt Examples")
|
293 |
+
gr.Examples(
|
294 |
+
examples=[
|
295 |
+
"cinematic photo, a man sitting on a chair in a dark room, realistic", # Realism example
|
296 |
+
"pixar style 3d render of a cute cat astronaut exploring mars", # Pixar example
|
297 |
+
"studio photography, high fashion model wearing a futuristic silver hoodie, dramatic lighting", # Photoshoot/Clothing example
|
298 |
+
"minimalist vector art illustration of a mountain range at sunset, liquid style", # Minimalist/Liquid example
|
299 |
+
"pencil sketch drawing of an old wise wizard with a long beard", # Pencil Art example
|
300 |
+
],
|
301 |
+
inputs=[prompt], # Only update the prompt field from examples
|
302 |
+
outputs=[result, used_seed], # Define outputs for example generation
|
303 |
+
fn=lambda p: generate( # Need a lambda to pass default values for other args
|
304 |
+
selected_base_model_name=list(pipelines_info.keys())[0], # Use default model for examples
|
305 |
+
prompt=p,
|
306 |
+
lora_choice="Realism (face/character)👦🏻", # Use default LoRA for examples
|
307 |
+
# Add other default args from 'generate' signature if needed
|
308 |
+
negative_prompt="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
309 |
+
use_negative_prompt=True,
|
310 |
+
seed=0, # Or make examples use random seed?
|
311 |
+
width=1024,
|
312 |
+
height=1024,
|
313 |
+
guidance_scale=3.0,
|
314 |
+
num_inference_steps=4,
|
315 |
+
randomize_seed=True, # Randomize seed for examples
|
316 |
+
style_name=DEFAULT_STYLE_NAME,
|
317 |
+
),
|
318 |
+
cache_examples=False, # Recalculate examples if needed
|
319 |
+
label="Click an example to generate"
|
320 |
+
)
|
321 |
+
gr.Markdown("### Predefined Image Gallery")
|
322 |
+
predefined_gallery = gr.Gallery(
|
323 |
+
label="Image Gallery", elem_id="predefined_gallery",
|
324 |
+
columns=3, show_label=False, value=load_predefined_images(), height=300
|
325 |
+
)
|
326 |
+
|
327 |
+
|
328 |
+
with gr.Accordion("⚙️ Advanced Settings", open=False):
|
329 |
+
style_selection = gr.Radio(
|
330 |
+
show_label=True,
|
331 |
+
container=True,
|
332 |
+
interactive=True,
|
333 |
+
choices=STYLE_NAMES,
|
334 |
+
value=DEFAULT_STYLE_NAME,
|
335 |
+
label="Image Quality Style",
|
336 |
+
)
|
337 |
+
with gr.Row():
|
338 |
+
use_negative_prompt = gr.Checkbox(label="Use Negative Prompt", value=True)
|
339 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
340 |
|
|
|
|
|
341 |
negative_prompt = gr.Text(
|
342 |
+
label="Negative Prompt",
|
343 |
+
max_lines=2,
|
344 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, worst quality, low quality",
|
345 |
+
placeholder="Enter concepts to avoid...",
|
346 |
+
visible=True, # Initially visible, controlled by checkbox change
|
|
|
347 |
)
|
348 |
seed = gr.Slider(
|
349 |
label="Seed",
|
|
|
351 |
maximum=MAX_SEED,
|
352 |
step=1,
|
353 |
value=0,
|
354 |
+
visible=True, # Initially visible, maybe hide if randomize is checked?
|
355 |
+
interactive=True
|
356 |
)
|
|
|
357 |
|
358 |
+
with gr.Row():
|
359 |
width = gr.Slider(
|
360 |
label="Width",
|
361 |
minimum=512,
|
362 |
+
maximum=1536, # Adjusted max based on typical SDXL use
|
363 |
+
step=64,
|
364 |
value=1024,
|
365 |
)
|
366 |
height = gr.Slider(
|
367 |
label="Height",
|
368 |
minimum=512,
|
369 |
+
maximum=1536, # Adjusted max based on typical SDXL use
|
370 |
+
step=64,
|
371 |
value=1024,
|
372 |
)
|
373 |
|
374 |
with gr.Row():
|
375 |
guidance_scale = gr.Slider(
|
376 |
+
label="Guidance Scale (CFG)",
|
377 |
+
minimum=0.0,
|
378 |
+
maximum=10.0, # Lightning models often use low CFG
|
379 |
step=0.1,
|
380 |
+
value=1.5, # Default low CFG for Lightning
|
381 |
+
)
|
382 |
+
num_inference_steps = gr.Slider(
|
383 |
+
label="Inference Steps",
|
384 |
+
minimum=1,
|
385 |
+
maximum=20, # Lightning models need very few steps
|
386 |
+
step=1,
|
387 |
+
value=4, # Default steps for Lightning
|
388 |
)
|
389 |
|
390 |
+
# --- Event Listeners ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
391 |
|
392 |
+
# Show/hide negative prompt input based on checkbox
|
393 |
use_negative_prompt.change(
|
394 |
fn=lambda x: gr.update(visible=x),
|
395 |
inputs=use_negative_prompt,
|
|
|
397 |
api_name=False,
|
398 |
)
|
399 |
|
400 |
+
# Show/hide seed slider based on randomize checkbox
|
401 |
+
randomize_seed.change(
|
402 |
+
fn=lambda x: gr.update(interactive=not x), # Make slider non-interactive if randomizing
|
403 |
+
inputs=randomize_seed,
|
404 |
+
outputs=seed,
|
405 |
+
api_name=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
)
|
407 |
|
408 |
+
# Main generation trigger
|
409 |
+
inputs_list = [
|
410 |
+
model_selector, # Add model selector
|
411 |
+
prompt,
|
412 |
+
negative_prompt,
|
413 |
+
use_negative_prompt,
|
414 |
+
seed,
|
415 |
+
width,
|
416 |
+
height,
|
417 |
+
guidance_scale,
|
418 |
+
num_inference_steps, # Add steps slider
|
419 |
+
randomize_seed,
|
420 |
+
style_selection,
|
421 |
+
model_choice, # This is the LoRA choice dropdown
|
422 |
+
]
|
423 |
+
outputs_list = [result, used_seed] # Output gallery and the seed number
|
424 |
|
425 |
+
prompt.submit(
|
426 |
+
fn=generate,
|
427 |
+
inputs=inputs_list,
|
428 |
+
outputs=outputs_list,
|
429 |
+
api_name="run_prompt_submit" # Optional: Define API name
|
430 |
+
)
|
431 |
+
run_button.click(
|
432 |
+
fn=generate,
|
433 |
+
inputs=inputs_list,
|
434 |
+
outputs=outputs_list,
|
435 |
+
api_name="run_button_click" # Optional: Define API name
|
436 |
+
)
|
437 |
+
|
438 |
+
# --- Launch ---
|
439 |
if __name__ == "__main__":
|
440 |
+
if not torch.cuda.is_available():
|
441 |
+
print("Warning: No CUDA GPU detected. Running on CPU will be extremely slow or may fail.")
|
442 |
+
DESCRIPTIONz += "\n<p>⚠️<b>WARNING: No GPU detected. Running on CPU is very slow and may not work reliably.</b> Consider using a GPU instance.</p>"
|
443 |
+
# Optionally disable parts of the UI or exit if CPU is unacceptable
|
444 |
+
# exit()
|
445 |
+
|
446 |
+
# Ensure asset directory exists for predefined images (optional but good practice)
|
447 |
+
if not os.path.exists("assets"):
|
448 |
+
print("Warning: 'assets' directory not found. Predefined images will not load.")
|
449 |
+
|
450 |
+
demo.queue(max_size=20).launch(debug=False) # Set debug=True for more logs if needed
|