Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import uuid
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
|
|
7 |
from threading import Thread
|
8 |
|
9 |
import gradio as gr
|
@@ -47,7 +48,32 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
47 |
|
48 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
49 |
|
50 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
52 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
53 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -62,6 +88,9 @@ TTS_VOICES = [
|
|
62 |
"en-US-GuyNeural", # @tts2
|
63 |
]
|
64 |
|
|
|
|
|
|
|
65 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
66 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
67 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -79,7 +108,6 @@ async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
|
79 |
def clean_chat_history(chat_history):
|
80 |
"""
|
81 |
Filter out any chat entries whose "content" is not a string.
|
82 |
-
This helps prevent errors when concatenating previous messages.
|
83 |
"""
|
84 |
cleaned = []
|
85 |
for msg in chat_history:
|
@@ -87,9 +115,9 @@ def clean_chat_history(chat_history):
|
|
87 |
cleaned.append(msg)
|
88 |
return cleaned
|
89 |
|
90 |
-
#
|
91 |
-
#
|
92 |
-
#
|
93 |
|
94 |
MAX_SEED = np.iinfo(np.int32).max
|
95 |
USE_TORCH_COMPILE = False
|
@@ -124,6 +152,12 @@ if torch.cuda.is_available():
|
|
124 |
for model_name, weight_name, adapter_name in LORA_OPTIONS.values():
|
125 |
pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
|
126 |
pipe.to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
def save_image(img: Image.Image) -> str:
|
129 |
"""Save a PIL image with a unique filename and return the path."""
|
@@ -167,10 +201,9 @@ def generate_image(
|
|
167 |
image_paths = [save_image(img) for img in images]
|
168 |
return image_paths, seed
|
169 |
|
170 |
-
#
|
171 |
-
#
|
172 |
-
#
|
173 |
-
|
174 |
@spaces.GPU
|
175 |
def generate(
|
176 |
input_dict: dict,
|
@@ -193,13 +226,12 @@ def generate(
|
|
193 |
files = input_dict.get("files", [])
|
194 |
|
195 |
# Check for image generation command based on LoRA tags.
|
196 |
-
# Build a mapping with lowercase keys.
|
197 |
lora_mapping = { key.lower(): key for key in LORA_OPTIONS }
|
198 |
for key_lower, key in lora_mapping.items():
|
199 |
command_tag = "@" + key_lower
|
200 |
if text.strip().lower().startswith(command_tag):
|
201 |
prompt_text = text.strip()[len(command_tag):].strip()
|
202 |
-
yield f"
|
203 |
image_paths, used_seed = generate_image(
|
204 |
prompt=prompt_text,
|
205 |
negative_prompt="",
|
@@ -210,7 +242,7 @@ def generate(
|
|
210 |
randomize_seed=True,
|
211 |
lora_model=key,
|
212 |
)
|
213 |
-
yield "
|
214 |
yield gr.Image(image_paths[0])
|
215 |
return
|
216 |
|
@@ -222,15 +254,13 @@ def generate(
|
|
222 |
if is_tts and voice_index:
|
223 |
voice = TTS_VOICES[voice_index - 1]
|
224 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
225 |
-
# Clear previous chat history for a fresh TTS request.
|
226 |
conversation = [{"role": "user", "content": text}]
|
227 |
else:
|
228 |
voice = None
|
229 |
-
# Remove any stray @tts tags and build the conversation history.
|
230 |
text = text.replace(tts_prefix, "").strip()
|
231 |
conversation = clean_chat_history(chat_history)
|
232 |
conversation.append({"role": "user", "content": text})
|
233 |
-
|
234 |
if files:
|
235 |
if len(files) > 1:
|
236 |
images = [load_image(image) for image in files]
|
@@ -253,7 +283,7 @@ def generate(
|
|
253 |
thread.start()
|
254 |
|
255 |
buffer = ""
|
256 |
-
yield "
|
257 |
for new_text in streamer:
|
258 |
buffer += new_text
|
259 |
buffer = buffer.replace("<|im_end|>", "")
|
@@ -288,12 +318,13 @@ def generate(
|
|
288 |
final_response = "".join(outputs)
|
289 |
yield final_response
|
290 |
|
291 |
-
# If TTS was requested, convert the final response to speech.
|
292 |
if is_tts and voice:
|
293 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
294 |
yield gr.Audio(output_file, autoplay=True)
|
295 |
|
296 |
-
|
|
|
|
|
297 |
demo = gr.ChatInterface(
|
298 |
fn=generate,
|
299 |
additional_inputs=[
|
@@ -303,26 +334,25 @@ demo = gr.ChatInterface(
|
|
303 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
304 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
305 |
],
|
306 |
-
examples
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
["@tts2 What causes rainbows to form?"],
|
326 |
],
|
327 |
cache_examples=False,
|
328 |
type="messages",
|
@@ -335,5 +365,4 @@ demo = gr.ChatInterface(
|
|
335 |
)
|
336 |
|
337 |
if __name__ == "__main__":
|
338 |
-
# To create a public link, set share=True in launch().
|
339 |
demo.queue(max_size=20).launch(share=True)
|
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
7 |
+
import re
|
8 |
from threading import Thread
|
9 |
|
10 |
import gradio as gr
|
|
|
48 |
|
49 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
50 |
|
51 |
+
# -----------------------
|
52 |
+
# Progress Bar Helper
|
53 |
+
# -----------------------
|
54 |
+
def progress_bar_html(label: str) -> str:
|
55 |
+
"""
|
56 |
+
Returns an HTML snippet for a thin progress bar with a label.
|
57 |
+
The progress bar is styled as a dark red animated bar.
|
58 |
+
"""
|
59 |
+
return f'''
|
60 |
+
<div style="display: flex; align-items: center;">
|
61 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
62 |
+
<div style="width: 110px; height: 5px; background-color: #f0f0f0; border-radius: 2px; overflow: hidden;">
|
63 |
+
<div style="width: 100%; height: 100%; background-color: #FF00FF; animation: loading 1.5s linear infinite;"></div>
|
64 |
+
</div>
|
65 |
+
</div>
|
66 |
+
<style>
|
67 |
+
@keyframes loading {{
|
68 |
+
0% {{ transform: translateX(-100%); }}
|
69 |
+
100% {{ transform: translateX(100%); }}
|
70 |
+
}}
|
71 |
+
</style>
|
72 |
+
'''
|
73 |
+
|
74 |
+
# -----------------------
|
75 |
+
# Text Generation Setup
|
76 |
+
# -----------------------
|
77 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
78 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
79 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
88 |
"en-US-GuyNeural", # @tts2
|
89 |
]
|
90 |
|
91 |
+
# -----------------------
|
92 |
+
# Multimodal OCR Setup
|
93 |
+
# -----------------------
|
94 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
95 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
96 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
108 |
def clean_chat_history(chat_history):
|
109 |
"""
|
110 |
Filter out any chat entries whose "content" is not a string.
|
|
|
111 |
"""
|
112 |
cleaned = []
|
113 |
for msg in chat_history:
|
|
|
115 |
cleaned.append(msg)
|
116 |
return cleaned
|
117 |
|
118 |
+
# -----------------------
|
119 |
+
# Stable Diffusion Image Generation Setup
|
120 |
+
# -----------------------
|
121 |
|
122 |
MAX_SEED = np.iinfo(np.int32).max
|
123 |
USE_TORCH_COMPILE = False
|
|
|
152 |
for model_name, weight_name, adapter_name in LORA_OPTIONS.values():
|
153 |
pipe.load_lora_weights(model_name, weight_name=weight_name, adapter_name=adapter_name)
|
154 |
pipe.to("cuda")
|
155 |
+
else:
|
156 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
157 |
+
"SG161222/RealVisXL_V4.0_Lightning",
|
158 |
+
torch_dtype=torch.float32,
|
159 |
+
use_safetensors=True,
|
160 |
+
).to(device)
|
161 |
|
162 |
def save_image(img: Image.Image) -> str:
|
163 |
"""Save a PIL image with a unique filename and return the path."""
|
|
|
201 |
image_paths = [save_image(img) for img in images]
|
202 |
return image_paths, seed
|
203 |
|
204 |
+
# -----------------------
|
205 |
+
# Main Chat/Generation Function
|
206 |
+
# -----------------------
|
|
|
207 |
@spaces.GPU
|
208 |
def generate(
|
209 |
input_dict: dict,
|
|
|
226 |
files = input_dict.get("files", [])
|
227 |
|
228 |
# Check for image generation command based on LoRA tags.
|
|
|
229 |
lora_mapping = { key.lower(): key for key in LORA_OPTIONS }
|
230 |
for key_lower, key in lora_mapping.items():
|
231 |
command_tag = "@" + key_lower
|
232 |
if text.strip().lower().startswith(command_tag):
|
233 |
prompt_text = text.strip()[len(command_tag):].strip()
|
234 |
+
yield progress_bar_html(f"Processing Image Generation ({key} style)")
|
235 |
image_paths, used_seed = generate_image(
|
236 |
prompt=prompt_text,
|
237 |
negative_prompt="",
|
|
|
242 |
randomize_seed=True,
|
243 |
lora_model=key,
|
244 |
)
|
245 |
+
yield progress_bar_html("Finalizing Image Generation")
|
246 |
yield gr.Image(image_paths[0])
|
247 |
return
|
248 |
|
|
|
254 |
if is_tts and voice_index:
|
255 |
voice = TTS_VOICES[voice_index - 1]
|
256 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
|
257 |
conversation = [{"role": "user", "content": text}]
|
258 |
else:
|
259 |
voice = None
|
|
|
260 |
text = text.replace(tts_prefix, "").strip()
|
261 |
conversation = clean_chat_history(chat_history)
|
262 |
conversation.append({"role": "user", "content": text})
|
263 |
+
|
264 |
if files:
|
265 |
if len(files) > 1:
|
266 |
images = [load_image(image) for image in files]
|
|
|
283 |
thread.start()
|
284 |
|
285 |
buffer = ""
|
286 |
+
yield progress_bar_html("Processing with Qwen2VL Ocr")
|
287 |
for new_text in streamer:
|
288 |
buffer += new_text
|
289 |
buffer = buffer.replace("<|im_end|>", "")
|
|
|
318 |
final_response = "".join(outputs)
|
319 |
yield final_response
|
320 |
|
|
|
321 |
if is_tts and voice:
|
322 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
323 |
yield gr.Audio(output_file, autoplay=True)
|
324 |
|
325 |
+
# -----------------------
|
326 |
+
# Gradio Chat Interface
|
327 |
+
# -----------------------
|
328 |
demo = gr.ChatInterface(
|
329 |
fn=generate,
|
330 |
additional_inputs=[
|
|
|
334 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
335 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
336 |
],
|
337 |
+
examples=[
|
338 |
+
['@realism Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic'],
|
339 |
+
["@pixar A young man with light brown wavy hair and light brown eyes sitting in an armchair and looking directly at the camera, pixar style, disney pixar, office background, ultra detailed, 1 man"],
|
340 |
+
["@realism A futuristic cityscape with neon lights"],
|
341 |
+
["@photoshoot A portrait of a person with dramatic lighting"],
|
342 |
+
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
343 |
+
["Python Program for Array Rotation"],
|
344 |
+
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
345 |
+
["@clothing Fashionable streetwear in an urban environment"],
|
346 |
+
["@interior A modern living room interior with minimalist design"],
|
347 |
+
["@fashion A runway model in haute couture"],
|
348 |
+
["@minimalistic A simple and elegant design of a serene landscape"],
|
349 |
+
["@modern A contemporary art piece with abstract geometric shapes"],
|
350 |
+
["@animaliea A cute animal portrait with vibrant colors"],
|
351 |
+
["@wallpaper A scenic mountain range perfect for a desktop wallpaper"],
|
352 |
+
["@cars A sleek sports car cruising on a city street"],
|
353 |
+
["@pencilart A detailed pencil sketch of a historic building"],
|
354 |
+
["@artminimalistic An artistic minimalist composition with subtle tones"],
|
355 |
+
["@tts2 What causes rainbows to form?"],
|
|
|
356 |
],
|
357 |
cache_examples=False,
|
358 |
type="messages",
|
|
|
365 |
)
|
366 |
|
367 |
if __name__ == "__main__":
|
|
|
368 |
demo.queue(max_size=20).launch(share=True)
|