Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,13 +9,11 @@ import spaces
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
12 |
-
DESCRIPTIONx = """## STABLE HAMSTER 🐹
|
13 |
-
|
14 |
-
"""
|
15 |
|
16 |
css = '''
|
17 |
.gradio-container {
|
18 |
-
max-width:
|
19 |
margin: 0 auto !important;
|
20 |
}
|
21 |
h1 {
|
@@ -34,13 +32,12 @@ examples = [
|
|
34 |
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
35 |
]
|
36 |
|
37 |
-
MODEL_ID = os.getenv("MODEL_VAL_PATH") #
|
38 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
39 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
40 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
41 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
42 |
|
43 |
-
# Load model outside of function
|
44 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
45 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
46 |
MODEL_ID,
|
@@ -50,11 +47,9 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
50 |
).to(device)
|
51 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
52 |
|
53 |
-
# Compile speedup
|
54 |
if USE_TORCH_COMPILE:
|
55 |
pipe.compile()
|
56 |
|
57 |
-
# Offloading capacity (RAM)
|
58 |
if ENABLE_CPU_OFFLOAD:
|
59 |
pipe.enable_model_cpu_offload()
|
60 |
|
@@ -82,13 +77,12 @@ def generate(
|
|
82 |
num_inference_steps: int = 25,
|
83 |
randomize_seed: bool = False,
|
84 |
use_resolution_binning: bool = True,
|
85 |
-
num_images: int = 4,
|
86 |
progress=gr.Progress(track_tqdm=True),
|
87 |
):
|
88 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
89 |
generator = torch.Generator(device=device).manual_seed(seed)
|
90 |
|
91 |
-
# Options
|
92 |
options = {
|
93 |
"prompt": [prompt] * num_images,
|
94 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
@@ -103,7 +97,6 @@ def generate(
|
|
103 |
if use_resolution_binning:
|
104 |
options["use_resolution_binning"] = True
|
105 |
|
106 |
-
# Generate images in batches
|
107 |
images = []
|
108 |
for i in range(0, num_images, BATCH_SIZE):
|
109 |
batch_options = options.copy()
|
@@ -117,6 +110,7 @@ def generate(
|
|
117 |
|
118 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
119 |
gr.Markdown(DESCRIPTIONx)
|
|
|
120 |
with gr.Row():
|
121 |
with gr.Column(scale=3):
|
122 |
with gr.Row():
|
@@ -128,72 +122,70 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
128 |
)
|
129 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
130 |
|
131 |
-
# Changed from gr.Image to gr.Gallery to handle multiple images
|
132 |
result = gr.Gallery(label="Result", columns=2, show_label=False)
|
133 |
-
|
134 |
-
with gr.Accordion("Advanced options", open=False, visible=True):
|
135 |
-
num_images = gr.Slider(
|
136 |
-
label="Number of Images",
|
137 |
-
minimum=1,
|
138 |
-
maximum=4,
|
139 |
-
step=1,
|
140 |
-
value=4,
|
141 |
-
)
|
142 |
-
with gr.Row():
|
143 |
-
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
144 |
-
negative_prompt = gr.Text(
|
145 |
-
label="Negative prompt",
|
146 |
-
max_lines=5,
|
147 |
-
lines=4,
|
148 |
-
placeholder="Enter a negative prompt",
|
149 |
-
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
150 |
-
visible=True,
|
151 |
-
)
|
152 |
-
seed = gr.Slider(
|
153 |
-
label="Seed",
|
154 |
-
minimum=0,
|
155 |
-
maximum=MAX_SEED,
|
156 |
-
step=1,
|
157 |
-
value=0,
|
158 |
-
)
|
159 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
160 |
-
with gr.Row(visible=True):
|
161 |
-
width = gr.Slider(
|
162 |
-
label="Width",
|
163 |
-
minimum=512,
|
164 |
-
maximum=MAX_IMAGE_SIZE,
|
165 |
-
step=64,
|
166 |
-
value=1024,
|
167 |
-
)
|
168 |
-
height = gr.Slider(
|
169 |
-
label="Height",
|
170 |
-
minimum=512,
|
171 |
-
maximum=MAX_IMAGE_SIZE,
|
172 |
-
step=64,
|
173 |
-
value=1024,
|
174 |
-
)
|
175 |
-
with gr.Row():
|
176 |
-
guidance_scale = gr.Slider(
|
177 |
-
label="Guidance Scale",
|
178 |
-
minimum=0.1,
|
179 |
-
maximum=6,
|
180 |
-
step=0.1,
|
181 |
-
value=3.0,
|
182 |
-
)
|
183 |
-
num_inference_steps = gr.Slider(
|
184 |
-
label="Number of inference steps",
|
185 |
-
minimum=1,
|
186 |
-
maximum=25,
|
187 |
-
step=1,
|
188 |
-
value=23,
|
189 |
-
)
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
use_negative_prompt.change(
|
199 |
fn=lambda x: gr.update(visible=x),
|
|
|
9 |
import torch
|
10 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
|
12 |
+
DESCRIPTIONx = """## STABLE HAMSTER 🐹"""
|
|
|
|
|
13 |
|
14 |
css = '''
|
15 |
.gradio-container {
|
16 |
+
max-width: 1000px !important;
|
17 |
margin: 0 auto !important;
|
18 |
}
|
19 |
h1 {
|
|
|
32 |
"Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 "
|
33 |
]
|
34 |
|
35 |
+
MODEL_ID = os.getenv("MODEL_VAL_PATH") # SG161222/RealVisXL_V5.0_Lightning or SG161222/RealVisXL_V4.0_Lightning
|
36 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
37 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
38 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
39 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
40 |
|
|
|
41 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
42 |
pipe = StableDiffusionXLPipeline.from_pretrained(
|
43 |
MODEL_ID,
|
|
|
47 |
).to(device)
|
48 |
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
49 |
|
|
|
50 |
if USE_TORCH_COMPILE:
|
51 |
pipe.compile()
|
52 |
|
|
|
53 |
if ENABLE_CPU_OFFLOAD:
|
54 |
pipe.enable_model_cpu_offload()
|
55 |
|
|
|
77 |
num_inference_steps: int = 25,
|
78 |
randomize_seed: bool = False,
|
79 |
use_resolution_binning: bool = True,
|
80 |
+
num_images: int = 4,
|
81 |
progress=gr.Progress(track_tqdm=True),
|
82 |
):
|
83 |
seed = int(randomize_seed_fn(seed, randomize_seed))
|
84 |
generator = torch.Generator(device=device).manual_seed(seed)
|
85 |
|
|
|
86 |
options = {
|
87 |
"prompt": [prompt] * num_images,
|
88 |
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
|
|
97 |
if use_resolution_binning:
|
98 |
options["use_resolution_binning"] = True
|
99 |
|
|
|
100 |
images = []
|
101 |
for i in range(0, num_images, BATCH_SIZE):
|
102 |
batch_options = options.copy()
|
|
|
110 |
|
111 |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
112 |
gr.Markdown(DESCRIPTIONx)
|
113 |
+
|
114 |
with gr.Row():
|
115 |
with gr.Column(scale=3):
|
116 |
with gr.Row():
|
|
|
122 |
)
|
123 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
124 |
|
|
|
125 |
result = gr.Gallery(label="Result", columns=2, show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
with gr.Accordion("Advanced options", open=False, visible=True):
|
128 |
+
num_images = gr.Slider(
|
129 |
+
label="Number of Images",
|
130 |
+
minimum=1,
|
131 |
+
maximum=4,
|
132 |
+
step=1,
|
133 |
+
value=4,
|
134 |
+
)
|
135 |
+
with gr.Row():
|
136 |
+
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
|
137 |
+
negative_prompt = gr.Text(
|
138 |
+
label="Negative prompt",
|
139 |
+
max_lines=5,
|
140 |
+
lines=4,
|
141 |
+
placeholder="Enter a negative prompt",
|
142 |
+
value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
143 |
+
visible=True,
|
144 |
+
)
|
145 |
+
seed = gr.Slider(
|
146 |
+
label="Seed",
|
147 |
+
minimum=0,
|
148 |
+
maximum=MAX_SEED,
|
149 |
+
step=1,
|
150 |
+
value=0,
|
151 |
+
)
|
152 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
153 |
+
with gr.Row(visible=True):
|
154 |
+
width = gr.Slider(
|
155 |
+
label="Width",
|
156 |
+
minimum=512,
|
157 |
+
maximum=MAX_IMAGE_SIZE,
|
158 |
+
step=64,
|
159 |
+
value=1024,
|
160 |
+
)
|
161 |
+
height = gr.Slider(
|
162 |
+
label="Height",
|
163 |
+
minimum=512,
|
164 |
+
maximum=MAX_IMAGE_SIZE,
|
165 |
+
step=64,
|
166 |
+
value=1024,
|
167 |
+
)
|
168 |
+
with gr.Row():
|
169 |
+
guidance_scale = gr.Slider(
|
170 |
+
label="Guidance Scale",
|
171 |
+
minimum=0.1,
|
172 |
+
maximum=6,
|
173 |
+
step=0.1,
|
174 |
+
value=3.0,
|
175 |
+
)
|
176 |
+
num_inference_steps = gr.Slider(
|
177 |
+
label="Number of inference steps",
|
178 |
+
minimum=1,
|
179 |
+
maximum=25,
|
180 |
+
step=1,
|
181 |
+
value=23,
|
182 |
+
)
|
183 |
+
with gr.Column(scale=1):
|
184 |
+
gr.Examples(
|
185 |
+
examples=examples,
|
186 |
+
inputs=prompt,
|
187 |
+
cache_examples=False,
|
188 |
+
)
|
189 |
|
190 |
use_negative_prompt.change(
|
191 |
fn=lambda x: gr.update(visible=x),
|